Add lean references to definitions/axioms.
parent
8279131d74
commit
88022b723c
|
@ -32,7 +32,7 @@ The \textbf{characteristic function} of $S$ is the function $\mathcal{X}_S$ such
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
\lean{Common/Set/Basic}{Set.characteristic}
|
\lean*{Common/Set/Basic}{Set.characteristic}
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
@ -49,7 +49,7 @@ Such a number $B$ is also known as the \textbf{greatest lower bound}.
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
\lean{Mathlib/Order/Bounds/Basic}{IsGLB}
|
\lean*{Mathlib/Order/Bounds/Basic}{IsGLB}
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
@ -148,7 +148,7 @@ A collection of points satisfying \eqref{sec:partition-eq1} is called a
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
\lean{Common/Set/Partition}{Set.Partition}
|
\lean*{Common/Set/Partition}{Set.Partition}
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
@ -180,7 +180,7 @@ That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
\lean{Common/Geometry/StepFunction}{Geometry.StepFunction}
|
\lean*{Common/Geometry/StepFunction}{Geometry.StepFunction}
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
@ -197,7 +197,7 @@ Such a number $B$ is also known as the \textbf{least upper bound}.
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
\lean{Mathlib/Order/Bounds/Basic}{IsLUB}
|
\lean*{Mathlib/Order/Bounds/Basic}{IsLUB}
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
@ -224,7 +224,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum;
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\lean{Mathlib/Data/Real/Basic}{Real.exists\_isLUB}
|
\lean*{Mathlib/Data/Real/Basic}{Real.exists\_isLUB}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
||||||
|
@ -676,7 +676,7 @@ For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\leanp{Common/Geometry/Area}{Nonnegative-Property}
|
\leanp*{Common/Geometry/Area}{Nonnegative-Property}
|
||||||
{Nonnegative Property}
|
{Nonnegative Property}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
@ -689,7 +689,7 @@ If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\leanp{Common/Geometry/Area}{Additive-Property}
|
\leanp*{Common/Geometry/Area}{Additive-Property}
|
||||||
{Additive Property}
|
{Additive Property}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
@ -702,7 +702,7 @@ If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\leanp{Common/Geometry/Area}{Difference-Property}
|
\leanp*{Common/Geometry/Area}{Difference-Property}
|
||||||
{Difference Property}
|
{Difference Property}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
@ -715,7 +715,7 @@ If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\leanp{Common/Geometry/Area}{Invariance-Under-Congruence}
|
\leanp*{Common/Geometry/Area}{Invariance-Under-Congruence}
|
||||||
{Invariance Under Congruence}
|
{Invariance Under Congruence}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
@ -728,7 +728,7 @@ If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\leanp{Common/Geometry/Area}{Choice-of-Scale}
|
\leanp*{Common/Geometry/Area}{Choice-of-Scale}
|
||||||
{Choice of Scale}
|
{Choice of Scale}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
@ -748,7 +748,7 @@ If there is one and only one number $c$ which satisfies the inequalities
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\leanp{Common/Geometry/Area}{Exhaustion-Property}
|
\leanp*{Common/Geometry/Area}{Exhaustion-Property}
|
||||||
{Exhaustion Property}
|
{Exhaustion Property}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
|
@ -17,12 +17,18 @@
|
||||||
\chapter{Reference}%
|
\chapter{Reference}%
|
||||||
\label{chap:reference}
|
\label{chap:reference}
|
||||||
|
|
||||||
\section{\partial{Empty Set Axiom}}%
|
\section{\defined{Empty Set Axiom}}%
|
||||||
\label{ref:empty-set-axiom}
|
\label{ref:empty-set-axiom}
|
||||||
|
|
||||||
There is a set having no members:
|
There is a set having no members:
|
||||||
$$\exists B, \forall x, x \not\in B.$$
|
$$\exists B, \forall x, x \not\in B.$$
|
||||||
|
|
||||||
|
\begin{axiom}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.emptyCollection}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
\section{\defined{Extensionality Axiom}}%
|
\section{\defined{Extensionality Axiom}}%
|
||||||
\label{ref:extensionality-axiom}
|
\label{ref:extensionality-axiom}
|
||||||
|
|
||||||
|
@ -32,23 +38,43 @@ If two sets have exactly the same members, then they are equal:
|
||||||
|
|
||||||
\begin{axiom}
|
\begin{axiom}
|
||||||
|
|
||||||
\lean{Mathlib/Init/Set}{Set.ext}
|
\lean*{Mathlib/Init/Set}{Set.ext}
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
||||||
\section{\partial{Pair Set}}%
|
\section{\defined{Pair Set}}%
|
||||||
\label{ref:pair-set}
|
\label{ref:pair-set}
|
||||||
|
|
||||||
For any sets $u$ and $v$, the \textbf{pair set $\{u, v\}$} is the set whose
|
For any sets $u$ and $v$, the \textbf{pair set $\{u, v\}$} is the set whose
|
||||||
only members are $u$ and $v$.
|
only members are $u$ and $v$.
|
||||||
|
|
||||||
\section{\partial{Pairing Axiom}}%
|
\begin{definition}
|
||||||
|
|
||||||
|
\ % Add space
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.insert}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.singleton}
|
||||||
|
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
\section{\defined{Pairing Axiom}}%
|
||||||
\label{ref:pairing-axiom}
|
\label{ref:pairing-axiom}
|
||||||
|
|
||||||
For any sets $u$ and $v$, there is a set having as members just $u$ and $v$:
|
For any sets $u$ and $v$, there is a set having as members just $u$ and $v$:
|
||||||
$$\forall u, \forall v, \exists B, \forall x,
|
$$\forall u, \forall v, \exists B, \forall x,
|
||||||
(x \in B \iff x = u \text{ or } x = v).$$
|
(x \in B \iff x = u \text{ or } x = v).$$
|
||||||
|
|
||||||
|
\begin{axiom}
|
||||||
|
|
||||||
|
\ % Add space
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.insert}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.singleton}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
\section{\defined{Power Set}}%
|
\section{\defined{Power Set}}%
|
||||||
\label{ref:power-set}
|
\label{ref:power-set}
|
||||||
|
|
||||||
|
@ -57,31 +83,49 @@ For any set $a$, the \textbf{power set $\powerset{a}$} is the set whose members
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
\lean{Mathlib/Init/Set}{Set.powerset}
|
\lean*{Mathlib/Init/Set}{Set.powerset}
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\section{\partial{Power Set Axiom}}%
|
\section{\defined{Power Set Axiom}}%
|
||||||
\label{ref:power-set-axiom}
|
\label{ref:power-set-axiom}
|
||||||
|
|
||||||
For any set $a$, there is a set whose members are exactly the subsets of $a$:
|
For any set $a$, there is a set whose members are exactly the subsets of $a$:
|
||||||
$$\forall a, \exists B, \forall x, (x \in B \iff x \subseteq a).$$
|
$$\forall a, \exists B, \forall x, (x \in B \iff x \subseteq a).$$
|
||||||
|
|
||||||
\section{\partial{Subset Axioms}}%
|
\begin{axiom}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.powerset}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
|
\section{\defined{Subset Axioms}}%
|
||||||
\label{ref:subset-axioms}
|
\label{ref:subset-axioms}
|
||||||
|
|
||||||
For each formula $\phi$ not containing $B$, the following is an axiom:
|
For each formula $\phi$ not containing $B$, the following is an axiom:
|
||||||
$$\forall t_1, \cdots \forall t_k, \forall c,
|
$$\forall t_1, \cdots \forall t_k, \forall c,
|
||||||
\exists B, \forall x, (x \in B \iff x \in c \land \phi).$$
|
\exists B, \forall x, (x \in B \iff x \in c \land \phi).$$
|
||||||
|
|
||||||
\section{\partial{Union Axiom}}%
|
\begin{axiom}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.Subset}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
|
\section{\defined{Union Axiom}}%
|
||||||
\label{ref:union-axiom}
|
\label{ref:union-axiom}
|
||||||
|
|
||||||
For any set $A$, there exists a set $B$ whose elements are exactly the members
|
For any set $A$, there exists a set $B$ whose elements are exactly the members
|
||||||
of the members of $A$:
|
of the members of $A$:
|
||||||
$$\forall A, \exists B, \forall x \left[ x \in B \iff (\exists b \in A) x \in b \right]$$
|
$$\forall A, \exists B, \forall x \left[ x \in B \iff (\exists b \in A) x \in b \right]$$
|
||||||
|
|
||||||
\section{\partial{Union Axiom, Preliminary Form}}%
|
\begin{axiom}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Data/Set/Lattice}{Set.sUnion}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
|
\section{\defined{Union Axiom, Preliminary Form}}%
|
||||||
\label{ref:union-axiom-preliminary-form}
|
\label{ref:union-axiom-preliminary-form}
|
||||||
|
|
||||||
For any sets $a$ and $b$, there is a set whose members are those sets belonging
|
For any sets $a$ and $b$, there is a set whose members are those sets belonging
|
||||||
|
@ -89,6 +133,12 @@ For any sets $a$ and $b$, there is a set whose members are those sets belonging
|
||||||
$$\forall a, \forall b, \exists B, \forall x,
|
$$\forall a, \forall b, \exists B, \forall x,
|
||||||
(x \in B \iff x \in a \text{ or } x \in b).$$
|
(x \in B \iff x \in a \text{ or } x \in b).$$
|
||||||
|
|
||||||
|
\begin{axiom}
|
||||||
|
|
||||||
|
\lean*{Mathlib/Init/Set}{Set.union}
|
||||||
|
|
||||||
|
\end{axiom}
|
||||||
|
|
||||||
\endgroup
|
\endgroup
|
||||||
|
|
||||||
\chapter{Introduction}%
|
\chapter{Introduction}%
|
||||||
|
|
Loading…
Reference in New Issue