diff --git a/Bookshelf/Apostol.tex b/Bookshelf/Apostol.tex index 901b2f2..4aa6c6a 100644 --- a/Bookshelf/Apostol.tex +++ b/Bookshelf/Apostol.tex @@ -32,7 +32,7 @@ The \textbf{characteristic function} of $S$ is the function $\mathcal{X}_S$ such \begin{definition} - \lean{Common/Set/Basic}{Set.characteristic} + \lean*{Common/Set/Basic}{Set.characteristic} \end{definition} @@ -49,7 +49,7 @@ Such a number $B$ is also known as the \textbf{greatest lower bound}. \begin{definition} - \lean{Mathlib/Order/Bounds/Basic}{IsGLB} + \lean*{Mathlib/Order/Bounds/Basic}{IsGLB} \end{definition} @@ -148,7 +148,7 @@ A collection of points satisfying \eqref{sec:partition-eq1} is called a \begin{definition} - \lean{Common/Set/Partition}{Set.Partition} + \lean*{Common/Set/Partition}{Set.Partition} \end{definition} @@ -180,7 +180,7 @@ That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$ \begin{definition} - \lean{Common/Geometry/StepFunction}{Geometry.StepFunction} + \lean*{Common/Geometry/StepFunction}{Geometry.StepFunction} \end{definition} @@ -197,7 +197,7 @@ Such a number $B$ is also known as the \textbf{least upper bound}. \begin{definition} - \lean{Mathlib/Order/Bounds/Basic}{IsLUB} + \lean*{Mathlib/Order/Bounds/Basic}{IsLUB} \end{definition} @@ -224,7 +224,7 @@ Every nonempty set $S$ of real numbers which is bounded above has a supremum; \begin{axiom} - \lean{Mathlib/Data/Real/Basic}{Real.exists\_isLUB} + \lean*{Mathlib/Data/Real/Basic}{Real.exists\_isLUB} \end{axiom} @@ -676,7 +676,7 @@ For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$. \begin{axiom} - \leanp{Common/Geometry/Area}{Nonnegative-Property} + \leanp*{Common/Geometry/Area}{Nonnegative-Property} {Nonnegative Property} \end{axiom} @@ -689,7 +689,7 @@ If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in \begin{axiom} - \leanp{Common/Geometry/Area}{Additive-Property} + \leanp*{Common/Geometry/Area}{Additive-Property} {Additive Property} \end{axiom} @@ -702,7 +702,7 @@ If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in \begin{axiom} - \leanp{Common/Geometry/Area}{Difference-Property} + \leanp*{Common/Geometry/Area}{Difference-Property} {Difference Property} \end{axiom} @@ -715,7 +715,7 @@ If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is \begin{axiom} - \leanp{Common/Geometry/Area}{Invariance-Under-Congruence} + \leanp*{Common/Geometry/Area}{Invariance-Under-Congruence} {Invariance Under Congruence} \end{axiom} @@ -728,7 +728,7 @@ If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$. \begin{axiom} - \leanp{Common/Geometry/Area}{Choice-of-Scale} + \leanp*{Common/Geometry/Area}{Choice-of-Scale} {Choice of Scale} \end{axiom} @@ -748,7 +748,7 @@ If there is one and only one number $c$ which satisfies the inequalities \begin{axiom} - \leanp{Common/Geometry/Area}{Exhaustion-Property} + \leanp*{Common/Geometry/Area}{Exhaustion-Property} {Exhaustion Property} \end{axiom} diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index 7c5074c..e376759 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -17,12 +17,18 @@ \chapter{Reference}% \label{chap:reference} -\section{\partial{Empty Set Axiom}}% +\section{\defined{Empty Set Axiom}}% \label{ref:empty-set-axiom} There is a set having no members: $$\exists B, \forall x, x \not\in B.$$ +\begin{axiom} + + \lean*{Mathlib/Init/Set}{Set.emptyCollection} + +\end{axiom} + \section{\defined{Extensionality Axiom}}% \label{ref:extensionality-axiom} @@ -32,23 +38,43 @@ If two sets have exactly the same members, then they are equal: \begin{axiom} - \lean{Mathlib/Init/Set}{Set.ext} + \lean*{Mathlib/Init/Set}{Set.ext} \end{axiom} -\section{\partial{Pair Set}}% +\section{\defined{Pair Set}}% \label{ref:pair-set} For any sets $u$ and $v$, the \textbf{pair set $\{u, v\}$} is the set whose only members are $u$ and $v$. -\section{\partial{Pairing Axiom}}% +\begin{definition} + + \ % Add space + + \lean*{Mathlib/Init/Set}{Set.insert} + + \lean*{Mathlib/Init/Set}{Set.singleton} + +\end{definition} + +\section{\defined{Pairing Axiom}}% \label{ref:pairing-axiom} For any sets $u$ and $v$, there is a set having as members just $u$ and $v$: $$\forall u, \forall v, \exists B, \forall x, (x \in B \iff x = u \text{ or } x = v).$$ +\begin{axiom} + + \ % Add space + + \lean*{Mathlib/Init/Set}{Set.insert} + + \lean*{Mathlib/Init/Set}{Set.singleton} + +\end{axiom} + \section{\defined{Power Set}}% \label{ref:power-set} @@ -57,31 +83,49 @@ For any set $a$, the \textbf{power set $\powerset{a}$} is the set whose members \begin{definition} - \lean{Mathlib/Init/Set}{Set.powerset} + \lean*{Mathlib/Init/Set}{Set.powerset} \end{definition} -\section{\partial{Power Set Axiom}}% +\section{\defined{Power Set Axiom}}% \label{ref:power-set-axiom} For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \iff x \subseteq a).$$ -\section{\partial{Subset Axioms}}% +\begin{axiom} + + \lean*{Mathlib/Init/Set}{Set.powerset} + +\end{axiom} + +\section{\defined{Subset Axioms}}% \label{ref:subset-axioms} For each formula $\phi$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots \forall t_k, \forall c, \exists B, \forall x, (x \in B \iff x \in c \land \phi).$$ -\section{\partial{Union Axiom}}% +\begin{axiom} + + \lean*{Mathlib/Init/Set}{Set.Subset} + +\end{axiom} + +\section{\defined{Union Axiom}}% \label{ref:union-axiom} For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$: $$\forall A, \exists B, \forall x \left[ x \in B \iff (\exists b \in A) x \in b \right]$$ -\section{\partial{Union Axiom, Preliminary Form}}% +\begin{axiom} + + \lean*{Mathlib/Data/Set/Lattice}{Set.sUnion} + +\end{axiom} + +\section{\defined{Union Axiom, Preliminary Form}}% \label{ref:union-axiom-preliminary-form} For any sets $a$ and $b$, there is a set whose members are those sets belonging @@ -89,6 +133,12 @@ For any sets $a$ and $b$, there is a set whose members are those sets belonging $$\forall a, \forall b, \exists B, \forall x, (x \in B \iff x \in a \text{ or } x \in b).$$ +\begin{axiom} + + \lean*{Mathlib/Init/Set}{Set.union} + +\end{axiom} + \endgroup \chapter{Introduction}%