Enderton. Prove out most of the set function exercises.
parent
d44bcd50ea
commit
8294d9583c
|
@ -6,11 +6,6 @@
|
||||||
\input{../../preamble}
|
\input{../../preamble}
|
||||||
\makeleancommands{../..}
|
\makeleancommands{../..}
|
||||||
|
|
||||||
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
|
||||||
\newcommand{\fld}[1]{\textop{fld}{#1}}
|
|
||||||
\newcommand{\ran}[1]{\textop{ran}{#1}}
|
|
||||||
\newcommand{\img}[2]{#1\left\llbracket#2\right\rrbracket}
|
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\header{Elements of Set Theory}{Herbert B. Enderton}
|
\header{Elements of Set Theory}{Herbert B. Enderton}
|
||||||
|
@ -52,8 +47,8 @@ The \textbf{composition} of sets $F$ and $G$ is
|
||||||
\section{\defined{Domain}}%
|
\section{\defined{Domain}}%
|
||||||
\label{ref:domain}
|
\label{ref:domain}
|
||||||
|
|
||||||
Given \nameref{ref:relation} $R$, the \textbf{domain} of $R$, denoted $\dom{R}$,
|
The \textbf{domain} of set $R$, denoted $\dom{R}$, is given by
|
||||||
is given by $$x \in \dom{R} \iff \exists y \left< x, y \right> \in R.$$
|
$$x \in \dom{R} \iff \exists y \left< x, y \right> \in R.$$
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
|
@ -77,7 +72,8 @@ There is a set having no members:
|
||||||
\label{ref:equivalence-relation}
|
\label{ref:equivalence-relation}
|
||||||
|
|
||||||
Relation $R$ is an \textbf{equivalence relation} if and only if $R$ is a binary
|
Relation $R$ is an \textbf{equivalence relation} if and only if $R$ is a binary
|
||||||
relation that is reflexive, symmetric, and transitive.
|
\nameref{ref:relation} that is \nameref{ref:reflexive},
|
||||||
|
\nameref{ref:symmetric}, and \nameref{ref:transitive}.
|
||||||
|
|
||||||
\section{\defined{Extensionality Axiom}}%
|
\section{\defined{Extensionality Axiom}}%
|
||||||
\label{ref:extensionality-axiom}
|
\label{ref:extensionality-axiom}
|
||||||
|
@ -233,8 +229,8 @@ For any set $a$, there is a set whose members are exactly the subsets of $a$:
|
||||||
\section{\defined{Range}}%
|
\section{\defined{Range}}%
|
||||||
\label{ref:range}
|
\label{ref:range}
|
||||||
|
|
||||||
Given \nameref{ref:relation} $R$, the \textbf{range} of $R$, denoted $\ran{R}$,
|
The \textbf{range} of set $R$, denoted $\ran{R}$, is given by
|
||||||
is given by $$x \in \ran{R} \iff \exists t \left< t, x \right> \in R.$$
|
$$x \in \ran{R} \iff \exists t \left< t, x \right> \in R.$$
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
|
||||||
|
@ -242,8 +238,8 @@ Given \nameref{ref:relation} $R$, the \textbf{range} of $R$, denoted $\ran{R}$,
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\section{\pending{Reflexive Relation}}%
|
\section{\pending{Reflexive}}%
|
||||||
\label{ref:reflexive-relation}
|
\label{ref:reflexive}
|
||||||
|
|
||||||
A binary relation $R$ is \textbf{reflexive} on $A$ if and only if $xRx$ for all
|
A binary relation $R$ is \textbf{reflexive} on $A$ if and only if $xRx$ for all
|
||||||
$x \in A$.
|
$x \in A$.
|
||||||
|
@ -284,8 +280,8 @@ For each formula $\phi$ not containing $B$, the following is an axiom:
|
||||||
|
|
||||||
\end{axiom}
|
\end{axiom}
|
||||||
|
|
||||||
\section{\pending{Symmetric Relation}}%
|
\section{\pending{Symmetric}}%
|
||||||
\label{ref:symmetric-relation}
|
\label{ref:symmetric}
|
||||||
|
|
||||||
A binary relation $R$ is \textbf{symmetric} on $A$ if and only if whenever
|
A binary relation $R$ is \textbf{symmetric} on $A$ if and only if whenever
|
||||||
$xRy$ then $yRx$.
|
$xRy$ then $yRx$.
|
||||||
|
@ -302,8 +298,8 @@ The \textbf{symmetric difference} $A + B$ of sets $A$ and $B$ is the set
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\section{\pending{Transitive Relation}}%
|
\section{\pending{Transitive}}%
|
||||||
\label{ref:transitive-relation}
|
\label{ref:transitive}
|
||||||
|
|
||||||
A binary relation $R$ is \textbf{transitive} on $A$ if and only if whenever
|
A binary relation $R$ is \textbf{transitive} on $A$ if and only if whenever
|
||||||
$xRy$ and $yRz$, then $xRz$.
|
$xRy$ and $yRz$, then $xRz$.
|
||||||
|
@ -2885,7 +2881,7 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||||
\subparagraph{($\Rightarrow$)}%
|
\subparagraph{($\Rightarrow$)}%
|
||||||
|
|
||||||
Let $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
|
Let $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
|
||||||
All that remains is to prove $F$ is single-valued.
|
All that remains is to prove $F$ is single-rooted.
|
||||||
Let $y \in \ran{F}$.
|
Let $y \in \ran{F}$.
|
||||||
By definition of the \nameref{ref:range} of a function, there exists some
|
By definition of the \nameref{ref:range} of a function, there exists some
|
||||||
$x$ such that $\left< x, y \right> \in F$.
|
$x$ such that $\left< x, y \right> \in F$.
|
||||||
|
@ -3175,7 +3171,7 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||||
\section{Equivalence Relations}%
|
\section{Equivalence Relations}%
|
||||||
\label{sec:equivalence-relations}
|
\label{sec:equivalence-relations}
|
||||||
|
|
||||||
\subsection{\sorry{Theorem 3M}}%
|
\subsection{\pending{Theorem 3M}}%
|
||||||
\label{sub:theorem-3m}
|
\label{sub:theorem-3m}
|
||||||
|
|
||||||
\begin{theorem}[3M]
|
\begin{theorem}[3M]
|
||||||
|
@ -3187,7 +3183,23 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Suppose $R$ is a \nameref{ref:symmetric} and \nameref{ref:transitive}
|
||||||
|
\nameref{ref:relation}.
|
||||||
|
By definition, the \nameref{ref:field} of $R$ is given by
|
||||||
|
$\fld{R} = \dom{R} \cup \ran{R}$.
|
||||||
|
An \nameref{ref:equivalence-relation} is, by definition, a
|
||||||
|
\nameref{ref:reflexive}, symmetric, and transitive relation.
|
||||||
|
Thus all that remains is to show $R$ is reflexive on $\fld{R}$.
|
||||||
|
|
||||||
|
Let $x \in \fld{R}$.
|
||||||
|
Then $x \in \dom{R}$ or $x \in \ran{R}$.
|
||||||
|
If $x \in \dom{R}$, there exists some $y$ such that $xRy$.
|
||||||
|
Since $R$ is symmetric, it follows $yRx$.
|
||||||
|
Since $R$ is transitive, it follows $xRx$.
|
||||||
|
If instead $x \in \ran{R}$, there exists some $t$ such that $tRx$.
|
||||||
|
Since $R$ is symmetric, it follows $xRt$.
|
||||||
|
Since $R$ is transitive, it follows $xRx$.
|
||||||
|
Thus $R$ is reflexive on $\fld{R}$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -3681,7 +3693,7 @@ Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive
|
||||||
|
|
||||||
\end{answer}
|
\end{answer}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.11}}%
|
\subsection{\verified{Exercise 3.11}}%
|
||||||
\label{sub:exercise-3.11}
|
\label{sub:exercise-3.11}
|
||||||
|
|
||||||
Prove the following version (for functions) of the extensionality principle:
|
Prove the following version (for functions) of the extensionality principle:
|
||||||
|
@ -3691,11 +3703,24 @@ Then $F = G$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
\lean{Init/Core}{funext}
|
||||||
|
|
||||||
|
Let $F$ and $G$ be functions such that $\dom{F} = \dom{G}$ and $F(x) = G(x)$
|
||||||
|
for all $x$ in the common domain.
|
||||||
|
We prove that $\left< x, y \right> \in F$ if and only if
|
||||||
|
$\left< x, y \right> \in G$.
|
||||||
|
But this follows immediately:
|
||||||
|
\begin{align*}
|
||||||
|
\left< x, y \right> \in F
|
||||||
|
& \iff y = F(x) \land \left< x, F(x) \right> \in F \\
|
||||||
|
& \iff y = G(x) \land \left< x, G(x) \right> \in G \\
|
||||||
|
& \iff \left< x, y \right> \in G.
|
||||||
|
\end{align*}
|
||||||
|
By the \nameref{ref:extensionality-axiom}, $F = G$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.12}}%
|
\subsection{\pending{Exercise 3.12}}%
|
||||||
\label{sub:exercise-3.12}
|
\label{sub:exercise-3.12}
|
||||||
|
|
||||||
Assume that $f$ and $g$ are functions and show that
|
Assume that $f$ and $g$ are functions and show that
|
||||||
|
@ -3704,11 +3729,31 @@ Assume that $f$ and $g$ are functions and show that
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $f$ and $g$ be \nameref{ref:function}s.
|
||||||
|
|
||||||
|
\paragraph{($\Rightarrow$)}%
|
||||||
|
|
||||||
|
Suppose $f \subseteq g$.
|
||||||
|
Then for all \nameref{ref:ordered-pair}s $\left< x, y \right>$,
|
||||||
|
$\left< x, y \right> \in f$ implies $\left< x, y \right> \in g$.
|
||||||
|
Thus every $x \in \dom{f}$ must be a member of $\dom{g}$.
|
||||||
|
Likewise, by definition of a function, $f$ and $g$ are single-valued.
|
||||||
|
Thus $f(x) = y$ and $g(x) = y$.
|
||||||
|
Since $x$ is an arbitrary element in the domain of $f$, it follows
|
||||||
|
$(\forall x \in \dom{f}) f(x) = y = g(x)$.
|
||||||
|
|
||||||
|
\paragraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
|
Suppose $\dom{f} \subseteq \dom{g}$ and
|
||||||
|
$(\forall x \in \dom{f}) f(x) = g(x)$.
|
||||||
|
Let $\left< x, y \right> \in f$.
|
||||||
|
By hypothesis, $x \in \dom{g}$ and $y = f(x) = g(x)$.
|
||||||
|
Thus $\left< x, y \right> \in g$ as well.
|
||||||
|
Therefore $f \subseteq g$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.13}}%
|
\subsection{\pending{Exercise 3.13}}%
|
||||||
\label{sub:exercise-3.13}
|
\label{sub:exercise-3.13}
|
||||||
|
|
||||||
Assume that $f$ and $g$ are functions with $f \subseteq g$ and
|
Assume that $f$ and $g$ are functions with $f \subseteq g$ and
|
||||||
|
@ -3717,11 +3762,17 @@ Show that $f = g$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $f$ and $g$ be functions such that $f \subseteq g$ and
|
||||||
|
$\dom{g} \subseteq \dom{f}$.
|
||||||
|
By \nameref{sub:exercise-3.12}, it follows that $\dom{f} \subseteq \dom{g}$
|
||||||
|
and $(\forall x \in \dom{f}) f(x) = g(x)$.
|
||||||
|
Since $\dom{g} \subseteq \dom{f}$ and $\dom{f} \subseteq \dom{g}$, it follows
|
||||||
|
that $\dom{g} = \dom{f}$.
|
||||||
|
By \nameref{sub:exercise-3.11}, $f = g$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.14}}%
|
\subsection{\pending{Exercise 3.14}}%
|
||||||
\label{sub:exercise-3.14}
|
\label{sub:exercise-3.14}
|
||||||
|
|
||||||
Assume that $f$ and $g$ are functions.
|
Assume that $f$ and $g$ are functions.
|
||||||
|
@ -3734,35 +3785,116 @@ Assume that $f$ and $g$ are functions.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Assume $f$ and $g$ are functions.
|
||||||
|
|
||||||
|
\paragraph{(a)}%
|
||||||
|
|
||||||
|
Consider $f \cap g$.
|
||||||
|
By definition of the intersection of sets, $f \cap g \subseteq f$.
|
||||||
|
By \nameref{sub:exercise-3.12}, $\dom{(f \cap g)} = \dom{f}$ and
|
||||||
|
$(\forall x \in \dom{(f \cap g)} (f \cap g)(x) = f(x)$.
|
||||||
|
The latter conjunct shows that, since $f$ is single-valued, $f \cap g$ must
|
||||||
|
also be single-valued.
|
||||||
|
In other words, $f \cap g$ is a function.
|
||||||
|
|
||||||
|
\paragraph{(b)}%
|
||||||
|
|
||||||
|
\subparagraph{($\Rightarrow$)}%
|
||||||
|
|
||||||
|
Suppose $f \cup g$ is a function.
|
||||||
|
Let $x \in (\dom{f}) \cap (\dom{g})$.
|
||||||
|
That is, $x \in \dom{f}$ and $x \in \dom{g}$.
|
||||||
|
Then there exists only one $y_1$ such that $\left< x, y_1 \right> \in f$.
|
||||||
|
Likewise there exists only one $y_2$ such that
|
||||||
|
$\left< x, y_2 \right> \in g$.
|
||||||
|
But $\left< x, y_1 \right> \in f \cup g$ and
|
||||||
|
$\left< x, y_2 \right> \in f \cup g$.
|
||||||
|
Since $f \cup g$ is single-valued, it follows $y_1 = y_2$.
|
||||||
|
That is, $f(x) = g(x)$.
|
||||||
|
|
||||||
|
\subparagraph{($\Leftarrow$)}%
|
||||||
|
|
||||||
|
Suppose $f(x) = g(x)$ for every $x \in (\dom{f}) \cap (\dom{g})$.
|
||||||
|
Let $x \in \dom{(f \cup g)}$.
|
||||||
|
There are three cases to consider:
|
||||||
|
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item Suppose $x \in \dom{f}$ but not in $\dom{g}$.
|
||||||
|
Since $f$ is a function, it follows $f \cup g$ has only one value $y$
|
||||||
|
such that $\left< x, y \right> \in f \cup g$.
|
||||||
|
\item Suppose $x \in \dom{g}$ but not in $\dom{f}$.
|
||||||
|
Again, since $g$ is a function, it follows $f \cup g$ has only one
|
||||||
|
value $y$ such that $\left< x, y \right> \in f \cup g$.
|
||||||
|
\item Suppose $x \in \dom{f}$ and $x \in \dom{g}$.
|
||||||
|
By hypothesis, $f(x) = g(x)$ meaning there is only one value $y$ such
|
||||||
|
that $\left< x, y \right> \in f \cup g$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
The above cases are exhaustive.
|
||||||
|
Together they imply that $f \cup g$ is single-valued, i.e. a function.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.15}}%
|
\subsection{\pending{Exercise 3.15}}%
|
||||||
\label{sub:exercise-3.15}
|
\label{sub:exercise-3.15}
|
||||||
|
|
||||||
Let $\mathscr{A}$ be a set of functions such that for any $f$ and $g$ in
|
Let $\mathscr{A}$ be a set of functions such that for any $f$ and $g$ in
|
||||||
$\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$.
|
$\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$.
|
||||||
Show that $\bigcup \mathscr{A}$ is a function.
|
Show that $\bigcup{\mathscr{A}}$ is a function.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $\mathscr{A}$ be a set of \nameref{ref:function}s such that for any $f$
|
||||||
|
and $g$ in $\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$.
|
||||||
|
Let $x \in \dom{\bigcup{\mathscr{A}}}$.
|
||||||
|
Then there exists some $y_1$ such that
|
||||||
|
$\left< x, y_1 \right> \in \bigcup{\mathscr{A}}$.
|
||||||
|
Suppose there also exists some $y_2$ such that
|
||||||
|
$\left< x, y_2 \right> \in \bigcup{\mathscr{A}}$.
|
||||||
|
|
||||||
|
By definition of the union of sets, there exists some function
|
||||||
|
$f \in \mathscr{A}$ such that $\left< x, y_1 \right> \in f$.
|
||||||
|
Likewise there exists some function $g \in \mathscr{A}$ such that
|
||||||
|
$\left< x, y_2 \right> \in g$.
|
||||||
|
There are two cases to consider:
|
||||||
|
|
||||||
|
\paragraph{Case 1}%
|
||||||
|
|
||||||
|
Suppose $f \subseteq g$.
|
||||||
|
Then $\left< x, y_1 \right>, \left< x, y_2 \right> \in g$.
|
||||||
|
Since $g$ is a function, i.e. single-valued, $y_1 = y_2$.
|
||||||
|
|
||||||
|
\paragraph{Case 2}%
|
||||||
|
|
||||||
|
Suppose $g \subseteq f$.
|
||||||
|
Then $\left< x, y_1 \right>, \left< x, y_2 \right> \in f$.
|
||||||
|
Since $f$ is a function, i.e. single-valued, $y_1 = y_2$.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
Since the above two cases applies for all
|
||||||
|
$x \in \dom{\bigcup{\mathscr{A}}}$ and appropriate choices of $f$ and $g$,
|
||||||
|
it follows $\bigcup{\mathscr{A}}$ is indeed a function.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.16}}%
|
\subsection{\unverified{Exercise 3.16}}%
|
||||||
\label{sub:exercise-3.16}
|
\label{sub:exercise-3.16}
|
||||||
|
|
||||||
Show that there is no set to which every function belongs.
|
Show that there is no set to which every function belongs.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Every \nameref{ref:relation} consisting of a single \nameref{ref:ordered-pair}
|
||||||
|
is, by definition, a \nameref{ref:function}.
|
||||||
|
By \nameref{sub:exercise-3.4}, there is no set to which every ordered pair
|
||||||
|
belongs.
|
||||||
|
Thus there is no set to which every function of the described type belongs
|
||||||
|
either, let alone a set to which \textit{every} function belongs.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.17}}%
|
\subsection{\pending{Exercise 3.17}}%
|
||||||
\label{sub:exercise-3.17}
|
\label{sub:exercise-3.17}
|
||||||
|
|
||||||
Show that the composition of two single-rooted sets is again single-rooted.
|
Show that the composition of two single-rooted sets is again single-rooted.
|
||||||
|
@ -3770,11 +3902,36 @@ Conclude that the composition of two one-to-one functions is again one-to-one.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $F$ and $G$ be two single-rooted sets.
|
||||||
|
Consider $F \circ G$.
|
||||||
|
By definition of the \nameref{ref:composition} of sets,
|
||||||
|
\begin{equation}
|
||||||
|
\label{sub:exercise-3.17-eq1}
|
||||||
|
F \circ G = \{\left< u, v \right> \mid \exists t(uGt \land tFv)\}.
|
||||||
|
\end{equation}
|
||||||
|
Consider any $v \in \ran{(F \circ G)}$.
|
||||||
|
By definition of the \nameref{ref:range} of a \nameref{ref:relation}, there
|
||||||
|
exists some $u_1$ such that $\left< u_1, v \right> \in F \circ G$.
|
||||||
|
Let $u_2$ be a set such that $\left< u_2, v \right> \in F \circ G$.
|
||||||
|
|
||||||
|
By \eqref{sub:exercise-3.17-eq1}, there exists a set $t_1$ such that
|
||||||
|
$\left< u_1, t_1 \right> \in G$ and $\left< t_1, v \right> \in F$.
|
||||||
|
Likewise, there exists a set $t_2$ such that
|
||||||
|
$\left< u_2, t_2 \right> \in G$ and $\left< t_2, v \right> \in F$.
|
||||||
|
But $F$ is single-rooted, meaning $t_1 = t_2$.
|
||||||
|
Likewise, because $G$ is single-rooted, $u_1 = u_2$.
|
||||||
|
Thus $F \circ G$ must also be single-rooted.
|
||||||
|
|
||||||
|
\suitdivider
|
||||||
|
|
||||||
|
Let $f$ and $g$ be one-to-one functions.
|
||||||
|
By \nameref{sub:theorem-3h}, $f \circ g$ is single-valued.
|
||||||
|
By the above, $f \circ g$ is single-rooted.
|
||||||
|
Thus $f \circ g$ is one-to-one.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.18}}%
|
\subsection{\pending{Exercise 3.18}}%
|
||||||
\label{sub:exercise-3.18}
|
\label{sub:exercise-3.18}
|
||||||
|
|
||||||
Let $R$ be the set
|
Let $R$ be the set
|
||||||
|
@ -3785,11 +3942,25 @@ Evaluate the following: $R \circ R$, $R \restriction \{1\}$,
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
\begin{enumerate}[(i)]
|
||||||
|
\item $R \circ R = \{
|
||||||
|
\left< 0, 2 \right>,
|
||||||
|
\left< 0, 3 \right>,
|
||||||
|
\left< 0, 3 \right>,
|
||||||
|
\left< 1, 3 \right>
|
||||||
|
\}$.
|
||||||
|
\item $R \restriction \{1\} = \{
|
||||||
|
\left< 1, 2 \right>,
|
||||||
|
\left< 1, 3 \right>
|
||||||
|
\}$.
|
||||||
|
\item $R^{-1} \restriction \{1\} = \{\left< 1, 0 \right>\}$.
|
||||||
|
\item $\img{R}{\{1\}} = \{2, 3\}$.
|
||||||
|
\item $\img{R^{-1}}{\{1\}} = \{0\}$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.19}}%
|
\subsection{\pending{Exercise 3.19}}%
|
||||||
\label{sub:exercise-3.19}
|
\label{sub:exercise-3.19}
|
||||||
|
|
||||||
Let $$A = \{
|
Let $$A = \{
|
||||||
|
@ -3804,33 +3975,80 @@ Evaluate each of the following: $A(\emptyset)$, $\img{A}{\emptyset}$,
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
\begin{enumerate}[(i)]
|
||||||
|
\item $A(\emptyset) = \{\emptyset, \{\emptyset\}\}$.
|
||||||
|
\item $\img{A}{\emptyset} = \emptyset$.
|
||||||
|
\item $\img{A}{\{\emptyset\}} = \{\{\emptyset, \{\emptyset\}\}\}$.
|
||||||
|
\item $\img{A}{\{\emptyset, \{\emptyset\}\}} =
|
||||||
|
\{\{\emptyset, \{\emptyset\}\}, \emptyset\}$.
|
||||||
|
\item $A^{-1} = \{
|
||||||
|
\left< \{\emptyset, \{\emptyset\}\}, \emptyset \right>,
|
||||||
|
\left< \emptyset, \{\emptyset\} \right>
|
||||||
|
\}$.
|
||||||
|
\item $A \circ A =
|
||||||
|
\{\left< \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right>\}$.
|
||||||
|
\item $A \restriction \emptyset = \emptyset$
|
||||||
|
\item $A \restriction \{\emptyset\} =
|
||||||
|
\{\left< \emptyset, \{\emptyset, \{\emptyset\}\} \right>\}$.
|
||||||
|
\item $A \restriction \{\emptyset, \{\emptyset\}\} = A$.
|
||||||
|
\item $\bigcup\bigcup A =
|
||||||
|
\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.20}}%
|
\subsection{\pending{Exercise 3.20}}%
|
||||||
\label{sub:exercise-3.20}
|
\label{sub:exercise-3.20}
|
||||||
|
|
||||||
Show that $F \restriction A = F \cap (A \times \ran{F})$.
|
Show that $F \restriction A = F \cap (A \times \ran{F})$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $F$ and $A$ be arbitrary sets.
|
||||||
|
By definition of the \nameref{ref:restriction}, intersection,
|
||||||
|
\nameref{ref:range}, and \nameref{sub:cartesian-product} of sets,
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
F \restriction A
|
||||||
|
& = \{\left< u, v \right> \mid uFv \land u \in A\} \\
|
||||||
|
& = \{\left< u, v \right> \mid
|
||||||
|
uFv \land u \in A \land v \in \ran{F}\} \\
|
||||||
|
& = \{\left< u, v \right> \mid uFv\} \cap
|
||||||
|
\{\left< u, v \right> \mid u \in A \land v \in \ran{F}\} \\
|
||||||
|
& = F \cap \{\left< u, v \right> \mid u \in A \land v \in \ran{F}\} \\
|
||||||
|
& = F \cap (A \times \ran{F}).
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.21}}%
|
\subsection{\pending{Exercise 3.21}}%
|
||||||
\label{sub:exercise-3.21}
|
\label{sub:exercise-3.21}
|
||||||
|
|
||||||
Show that $(R \circ S) \circ T = R \circ (S \circ T)$.
|
Show that $(R \circ S) \circ T = R \circ (S \circ T)$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $R$, $S$, and $T$ be arbitrary sets.
|
||||||
|
By definition of the \nameref{ref:composition} of sets,
|
||||||
|
\begin{align*}
|
||||||
|
(R \circ S) \circ T
|
||||||
|
& = \{\left< u, v \right> \mid
|
||||||
|
\exists t(u(R \circ S)t \land tTv)\} \\
|
||||||
|
& = \{\left< u, v \right> \mid
|
||||||
|
\exists t((\exists a, uRa \land aSt) \land tTv)\} \\
|
||||||
|
& = \{\left< u, v \right> \mid
|
||||||
|
\exists t, \exists a, (uRa \land aSt \land tTv)\} \\
|
||||||
|
& = \{\left< u, v \right> \mid
|
||||||
|
\exists a, \exists t, (uRa \land aSt \land tTv)\} \\
|
||||||
|
& = \{\left< u, v \right> \mid
|
||||||
|
\exists a(uRa \land (\exists t, aSt \land tTv))\} \\
|
||||||
|
& = \{\left< u, v \right> \mid \exists a(uRa \land a(S \circ T)v)\} \\
|
||||||
|
& = R \circ (S \circ T).
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.22}}%
|
\subsection{\pending{Exercise 3.22}}%
|
||||||
\label{sub:exercise-3.22}
|
\label{sub:exercise-3.22}
|
||||||
|
|
||||||
Show that the following are correct for any sets.
|
Show that the following are correct for any sets.
|
||||||
|
@ -3844,11 +4062,55 @@ Show that the following are correct for any sets.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $A$, $B$, $F$, $G$, and $Q$ be arbitrary sets.
|
||||||
|
|
||||||
|
\paragraph{(a)}%
|
||||||
|
|
||||||
|
Suppose $A \subseteq B$.
|
||||||
|
Let $x \in \img{F}{A}$.
|
||||||
|
By definition of the \nameref{ref:image} of a set,
|
||||||
|
$\img{F}{A} = \{v \mid (\exists u \in A) uFv\}$.
|
||||||
|
Thus there exists some $u \in A$ such that $uFx$.
|
||||||
|
But $A \subseteq B$ meaning $u \in B$.
|
||||||
|
That is, $(\exists u \in B)uFx$.
|
||||||
|
Thus $$x \in \{v \mid (\exists u \in B)uFv\} = \img{F}{B}.$$
|
||||||
|
|
||||||
|
\paragraph{(b)}%
|
||||||
|
|
||||||
|
By definition of the \nameref{ref:composition} and \nameref{ref:image} of a
|
||||||
|
set,
|
||||||
|
\begin{align*}
|
||||||
|
\img{(F \circ G)}{A}
|
||||||
|
& = \{v \mid (\exists u \in A) u(F \circ G)v\} \\
|
||||||
|
& = \{v \mid (\exists u \in A) \left< u, v \right> \in F \circ G\} \\
|
||||||
|
& = \{v \mid (\exists u \in A)
|
||||||
|
\left< u, v \right> \in \{\left< b, c \right> \mid
|
||||||
|
\exists a(bGa \land aFc)\}\} \\
|
||||||
|
& = \{v \mid \exists u \in A, \exists a, uGa \land aFv\} \\
|
||||||
|
& = \{v \mid \exists a, \exists u \in A, uGa \land aFv\} \\
|
||||||
|
& = \{v \mid \exists a, (\exists u \in A, uGa) \land aFv\} \\
|
||||||
|
& = \{v \mid \exists a \in \{w \mid (\exists u \in A)uGw\}, aFv\} \\
|
||||||
|
& = \{v \mid (\exists a \in \img{G}{A}) aFv\} \\
|
||||||
|
& = \img{F}{\img{G}{A}}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\paragraph{(c)}%
|
||||||
|
|
||||||
|
By definition of the \nameref{ref:restriction} of a set,
|
||||||
|
\begin{align*}
|
||||||
|
Q \restriction (A \cup B)
|
||||||
|
& = \{\left< u, v \right> \mid uQv \land u \in A \cup B\} \\
|
||||||
|
& = \{\left< u, v \right> \mid uQv \land (u \in A \lor u \in B)\} \\
|
||||||
|
& = \{\left< u, v \right> \mid
|
||||||
|
(uQv \land u \in A) \lor (uQv \land u \in B)\} \\
|
||||||
|
& = \{\left< u, v \right> \mid uQv \land u \in A\} \cup
|
||||||
|
\{\left< u, v \right> \mid uQv \land u \in B\} \\
|
||||||
|
& = (Q \restriction A) \cup (Q \restriction B).
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.23}}%
|
\subsection{\pending{Exercise 3.23}}%
|
||||||
\label{sub:exercise-3.23}
|
\label{sub:exercise-3.23}
|
||||||
|
|
||||||
Let $I_A$ be the identity function on the set $A$.
|
Let $I_A$ be the identity function on the set $A$.
|
||||||
|
@ -3858,11 +4120,53 @@ Show that for any sets $B$ and $C$,
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $I_A$ be the identity function on the set $A$.
|
||||||
|
That is, $I_A = \{\left< u, u \right> \mid u \in A\}$.
|
||||||
|
Let $B$ and $C$ be any sets.
|
||||||
|
We show that (i) $B \circ I_A = B \restriction A$ and (ii)
|
||||||
|
$\img{I_A}{C} = A \cap C$.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
|
||||||
|
We show that $B \circ I_A \subseteq B \restriction A$ and
|
||||||
|
$B \restriction A \subseteq B \circ I_A$.
|
||||||
|
|
||||||
|
\subparagraph{($\subseteq$)}%
|
||||||
|
|
||||||
|
Let $\left< x, y \right> \in B \circ I_A$.
|
||||||
|
By definition of the \nameref{ref:composition} of sets,
|
||||||
|
there exists some $t$ such that $xBt$ and $t(I_A)y$.
|
||||||
|
By definition of the identity function, $I_A(t) = y$ implies $t = y$.
|
||||||
|
Thus $xBy$.
|
||||||
|
By hypothesis, $x \in \dom{(B \circ I_A)}$.
|
||||||
|
Therefore $x \in \dom{I_A} = A$.
|
||||||
|
Thus
|
||||||
|
$$\left< x, y \right>
|
||||||
|
\in \{\left< u, v \right> \mid u \in A \land uBv\}
|
||||||
|
= B \restriction A.$$
|
||||||
|
|
||||||
|
\subparagraph{($\supseteq$)}%
|
||||||
|
|
||||||
|
Let $\left< x, y \right> \in B \restriction A$.
|
||||||
|
By definition of the \nameref{ref:restriction} of sets,
|
||||||
|
$x \in A$ and $xBy$.
|
||||||
|
But $I_A(x) = x$ meaning $\left< I_A(x), y \right> \in B$.
|
||||||
|
In other words, $\left< x, y \right> \in B \circ I_A$.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
|
||||||
|
By definition of the \nameref{ref:image} of sets,
|
||||||
|
\begin{align*}
|
||||||
|
\img{I_A}{C}
|
||||||
|
& = \{v \mid (\exists u \in C) \left< u, v \right> \in I_A\} \\
|
||||||
|
& = \{v \mid \exists u \in C, u \in A \land u = v\} \\
|
||||||
|
& = \{v \mid v \in C \land v \in A\} \\
|
||||||
|
& = C \cap A.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.24}}%
|
\subsection{\pending{Exercise 3.24}}%
|
||||||
\label{sub:exercise-3.24}
|
\label{sub:exercise-3.24}
|
||||||
|
|
||||||
Show that for a function $F$,
|
Show that for a function $F$,
|
||||||
|
@ -3870,11 +4174,20 @@ Show that for a function $F$,
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $F$ be a function.
|
||||||
|
By definition of the \nameref{ref:inverse} of a set,
|
||||||
|
\begin{align*}
|
||||||
|
\img{F^{-1}}{A}
|
||||||
|
& = \{x \mid (\exists y \in A) yF^{-1}x\} \\
|
||||||
|
& = \{x \mid (\exists y \in A) xFy\} \\
|
||||||
|
& = \{x \mid (\exists y \in A) \left< x, y \right> \in F\} \\
|
||||||
|
& = \{x \mid \exists x \in F, F(x) \in A\} \\
|
||||||
|
& = \{x \in \dom{F} \mid F(x) \in A\}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.25}}%
|
\subsection{\pending{Exercise 3.25}}%
|
||||||
\label{sub:exercise-3.25}
|
\label{sub:exercise-3.25}
|
||||||
|
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
|
@ -3887,22 +4200,38 @@ Show that for a function $F$,
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
\paragraph{(b)}%
|
||||||
|
\label{par:exercise-3.25-b}
|
||||||
|
|
||||||
|
Let $G$ be a function.
|
||||||
|
Let $\left< x, y \right> \in G \circ G^{-1}$.
|
||||||
|
By definition of the \nameref{ref:composition} of sets, there exists some
|
||||||
|
set $t$ such that $x(G^{-1})t$ and $tGy$.
|
||||||
|
By definition of the \nameref{ref:inverse} of a set,
|
||||||
|
$$x(G^{-1})t \iff tGx.$$
|
||||||
|
By hypothesis, $G$ is single-valued.
|
||||||
|
Thus $x = y$.
|
||||||
|
That is, $G \circ G^{-1}$ is the identity function on $\ran{G}$.
|
||||||
|
|
||||||
|
\paragraph{(a)}%
|
||||||
|
|
||||||
|
This immediately follows from part \nameref{par:exercise-3.25-b}.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.26}}%
|
\subsection{\pending{Exercise 3.26}}%
|
||||||
\label{sub:exercise-3.26}
|
\label{sub:exercise-3.26}
|
||||||
|
|
||||||
Prove the second halves of parts (a) and (b) of Theorem 3K.
|
Prove the second halves of parts (a) and (b) of Theorem 3K.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Refer to \nameref{sub:theorem-3k-a}, \nameref{sub:theorem-3k-b}, and
|
||||||
|
\nameref{sub:theorem-3k-c}.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Exercise 3.27}}%
|
\subsection{\pending{Exercise 3.27}}%
|
||||||
\label{sub:exercise-3.27}
|
\label{sub:exercise-3.27}
|
||||||
|
|
||||||
Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$.
|
Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$.
|
||||||
|
@ -3910,7 +4239,36 @@ Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$.
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
TODO
|
Let $F$ and $G$ be arbitrary sets.
|
||||||
|
We show that each side of our desired equality is a subset of the other.
|
||||||
|
|
||||||
|
\paragraph{($\subseteq$)}%
|
||||||
|
|
||||||
|
Let $x \in \dom{(F \circ G)}$.
|
||||||
|
Then there exists a set $y$ such that $\left< x, y \right> \in F \circ G$.
|
||||||
|
By definition of the \nameref{ref:composition} of sets, there exists a set
|
||||||
|
$t$ such that $xGt$ and $tFy$.
|
||||||
|
Thus $t \in \dom{F}$.
|
||||||
|
Therefore
|
||||||
|
\begin{align*}
|
||||||
|
x
|
||||||
|
& \in \{v \mid (\exists t \in \dom{F}) vGt\} \\
|
||||||
|
& = \{v \mid (\exists t \in \dom{F}) t(G^{-1})v\} \\
|
||||||
|
& = \img{G^{-1}}{\dom{F}}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\paragraph{($\supseteq$)}%
|
||||||
|
|
||||||
|
Let $x \in \img{G^{-1}}{\dom{F}}$.
|
||||||
|
Then, by definition of the \nameref{ref:image} of a set, there exists some
|
||||||
|
$u \in \dom{F}$ such that $u(G^{-1})x$.
|
||||||
|
By definition of the \nameref{ref:inverse} of a set, $xGu$.
|
||||||
|
By definition of the \nameref{ref:domain} of a set, there exists some $t$
|
||||||
|
such that $uFt$.
|
||||||
|
Thus $xGu \land uFt$.
|
||||||
|
By definition of the \nameref{ref:composition} of sets,
|
||||||
|
$\left< x, t \right> \in F \circ G$.
|
||||||
|
Therefore $x \in \dom{(F \circ G)}$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
|
@ -507,10 +507,18 @@ Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
||||||
**iff** `F` is one-to-one.
|
**iff** `F` is one-to-one.
|
||||||
-/
|
-/
|
||||||
theorem theorem_3j_a {F : Set.Relation α} {A B : Set α}
|
theorem theorem_3j_a {F : Set.Relation α} {A B : Set α}
|
||||||
(hF : F.mapsInto A B) (hA : Set.Nonempty A)
|
(hF : F.isSingleValued ∧ F.mapsInto A B) (hA : Set.Nonempty A)
|
||||||
: (∃ G : Set.Relation α,
|
: (∃ G : Set.Relation α,
|
||||||
G.mapsInto B A ∧ (∀ p ∈ G.comp F, p.1 = p.2)) ↔ F.isOneToOne := by
|
G.isSingleValued ∧ G.mapsInto B A ∧
|
||||||
|
(∀ p ∈ G.comp F, p.1 = p.2)) ↔ F.isOneToOne := by
|
||||||
|
apply Iff.intro
|
||||||
|
· intro ⟨G, ⟨hG₁, hG₂, hI⟩⟩
|
||||||
|
refine ⟨hF.left, ?_⟩
|
||||||
|
show F.isSingleRooted
|
||||||
|
intro y hy
|
||||||
|
have ⟨x, hx⟩ := ran_exists hy
|
||||||
sorry
|
sorry
|
||||||
|
· sorry
|
||||||
|
|
||||||
/-- #### Theorem 3J (b)
|
/-- #### Theorem 3J (b)
|
||||||
|
|
||||||
|
@ -519,9 +527,10 @@ Assume that `F : A → B`, and that `A` is nonempty. There exists a function
|
||||||
`B` **iff** `F` maps `A` onto `B`.
|
`B` **iff** `F` maps `A` onto `B`.
|
||||||
-/
|
-/
|
||||||
theorem theorem_3j_b {F : Set.Relation α} {A B : Set α}
|
theorem theorem_3j_b {F : Set.Relation α} {A B : Set α}
|
||||||
(hF : F.mapsInto A B) (hA : Set.Nonempty A)
|
(hF : F.isSingleValued ∧ F.mapsInto A B) (hA : Set.Nonempty A)
|
||||||
: (∃ H : Set.Relation α,
|
: (∃ H : Set.Relation α,
|
||||||
H.mapsInto B A ∧ (∀ p ∈ F.comp H, p.1 = p.2)) ↔ F.mapsOnto A B := by
|
H.isSingleValued ∧ H.mapsInto B A ∧
|
||||||
|
(∀ p ∈ F.comp H, p.1 = p.2)) ↔ F.mapsOnto A B := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
|
@ -131,12 +131,16 @@
|
||||||
|
|
||||||
\newcommand{\abs}[1]{\left|#1\right|}
|
\newcommand{\abs}[1]{\left|#1\right|}
|
||||||
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
|
||||||
|
\newcommand{\dom}[1]{\textop{dom}{#1}}
|
||||||
|
\newcommand{\fld}[1]{\textop{fld}{#1}}
|
||||||
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
|
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
|
||||||
\newcommand{\icc}[2]{\left[#1, #2\right]}
|
\newcommand{\icc}[2]{\left[#1, #2\right]}
|
||||||
\newcommand{\ico}[2]{\left[#1, #2\right)}
|
\newcommand{\ico}[2]{\left[#1, #2\right)}
|
||||||
|
\newcommand{\img}[2]{#1\!\left\llbracket#2\right\rrbracket}
|
||||||
\newcommand{\ioc}[2]{\left(#1, #2\right]}
|
\newcommand{\ioc}[2]{\left(#1, #2\right]}
|
||||||
\newcommand{\ioo}[2]{\left(#1, #2\right)}
|
\newcommand{\ioo}[2]{\left(#1, #2\right)}
|
||||||
\newcommand{\powerset}[1]{\mathscr{P}#1}
|
\newcommand{\powerset}[1]{\mathscr{P}#1}
|
||||||
|
\newcommand{\ran}[1]{\textop{ran}{#1}}
|
||||||
\newcommand{\textop}[1]{\mathop{\text{#1}}}
|
\newcommand{\textop}[1]{\mathop{\text{#1}}}
|
||||||
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
|
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue