diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index 7fb94ce..6e9d399 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -6,11 +6,6 @@ \input{../../preamble} \makeleancommands{../..} -\newcommand{\dom}[1]{\textop{dom}{#1}} -\newcommand{\fld}[1]{\textop{fld}{#1}} -\newcommand{\ran}[1]{\textop{ran}{#1}} -\newcommand{\img}[2]{#1\left\llbracket#2\right\rrbracket} - \begin{document} \header{Elements of Set Theory}{Herbert B. Enderton} @@ -52,8 +47,8 @@ The \textbf{composition} of sets $F$ and $G$ is \section{\defined{Domain}}% \label{ref:domain} -Given \nameref{ref:relation} $R$, the \textbf{domain} of $R$, denoted $\dom{R}$, - is given by $$x \in \dom{R} \iff \exists y \left< x, y \right> \in R.$$ +The \textbf{domain} of set $R$, denoted $\dom{R}$, is given by + $$x \in \dom{R} \iff \exists y \left< x, y \right> \in R.$$ \begin{definition} @@ -77,7 +72,8 @@ There is a set having no members: \label{ref:equivalence-relation} Relation $R$ is an \textbf{equivalence relation} if and only if $R$ is a binary - relation that is reflexive, symmetric, and transitive. + \nameref{ref:relation} that is \nameref{ref:reflexive}, + \nameref{ref:symmetric}, and \nameref{ref:transitive}. \section{\defined{Extensionality Axiom}}% \label{ref:extensionality-axiom} @@ -233,8 +229,8 @@ For any set $a$, there is a set whose members are exactly the subsets of $a$: \section{\defined{Range}}% \label{ref:range} -Given \nameref{ref:relation} $R$, the \textbf{range} of $R$, denoted $\ran{R}$, - is given by $$x \in \ran{R} \iff \exists t \left< t, x \right> \in R.$$ +The \textbf{range} of set $R$, denoted $\ran{R}$, is given by + $$x \in \ran{R} \iff \exists t \left< t, x \right> \in R.$$ \begin{definition} @@ -242,8 +238,8 @@ Given \nameref{ref:relation} $R$, the \textbf{range} of $R$, denoted $\ran{R}$, \end{definition} -\section{\pending{Reflexive Relation}}% -\label{ref:reflexive-relation} +\section{\pending{Reflexive}}% +\label{ref:reflexive} A binary relation $R$ is \textbf{reflexive} on $A$ if and only if $xRx$ for all $x \in A$. @@ -284,8 +280,8 @@ For each formula $\phi$ not containing $B$, the following is an axiom: \end{axiom} -\section{\pending{Symmetric Relation}}% -\label{ref:symmetric-relation} +\section{\pending{Symmetric}}% +\label{ref:symmetric} A binary relation $R$ is \textbf{symmetric} on $A$ if and only if whenever $xRy$ then $yRx$. @@ -302,8 +298,8 @@ The \textbf{symmetric difference} $A + B$ of sets $A$ and $B$ is the set \end{definition} -\section{\pending{Transitive Relation}}% -\label{ref:transitive-relation} +\section{\pending{Transitive}}% +\label{ref:transitive} A binary relation $R$ is \textbf{transitive} on $A$ if and only if whenever $xRy$ and $yRz$, then $xRz$. @@ -2885,7 +2881,7 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one. \subparagraph{($\Rightarrow$)}% Let $G \colon B \rightarrow A$ such that $G \circ F = I_A$. - All that remains is to prove $F$ is single-valued. + All that remains is to prove $F$ is single-rooted. Let $y \in \ran{F}$. By definition of the \nameref{ref:range} of a function, there exists some $x$ such that $\left< x, y \right> \in F$. @@ -3175,7 +3171,7 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one. \section{Equivalence Relations}% \label{sec:equivalence-relations} -\subsection{\sorry{Theorem 3M}}% +\subsection{\pending{Theorem 3M}}% \label{sub:theorem-3m} \begin{theorem}[3M] @@ -3187,7 +3183,23 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one. \begin{proof} - TODO + Suppose $R$ is a \nameref{ref:symmetric} and \nameref{ref:transitive} + \nameref{ref:relation}. + By definition, the \nameref{ref:field} of $R$ is given by + $\fld{R} = \dom{R} \cup \ran{R}$. + An \nameref{ref:equivalence-relation} is, by definition, a + \nameref{ref:reflexive}, symmetric, and transitive relation. + Thus all that remains is to show $R$ is reflexive on $\fld{R}$. + + Let $x \in \fld{R}$. + Then $x \in \dom{R}$ or $x \in \ran{R}$. + If $x \in \dom{R}$, there exists some $y$ such that $xRy$. + Since $R$ is symmetric, it follows $yRx$. + Since $R$ is transitive, it follows $xRx$. + If instead $x \in \ran{R}$, there exists some $t$ such that $tRx$. + Since $R$ is symmetric, it follows $xRt$. + Since $R$ is transitive, it follows $xRx$. + Thus $R$ is reflexive on $\fld{R}$. \end{proof} @@ -3681,7 +3693,7 @@ Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive \end{answer} -\subsection{\sorry{Exercise 3.11}}% +\subsection{\verified{Exercise 3.11}}% \label{sub:exercise-3.11} Prove the following version (for functions) of the extensionality principle: @@ -3691,11 +3703,24 @@ Then $F = G$. \begin{proof} - TODO + \lean{Init/Core}{funext} + + Let $F$ and $G$ be functions such that $\dom{F} = \dom{G}$ and $F(x) = G(x)$ + for all $x$ in the common domain. + We prove that $\left< x, y \right> \in F$ if and only if + $\left< x, y \right> \in G$. + But this follows immediately: + \begin{align*} + \left< x, y \right> \in F + & \iff y = F(x) \land \left< x, F(x) \right> \in F \\ + & \iff y = G(x) \land \left< x, G(x) \right> \in G \\ + & \iff \left< x, y \right> \in G. + \end{align*} + By the \nameref{ref:extensionality-axiom}, $F = G$. \end{proof} -\subsection{\sorry{Exercise 3.12}}% +\subsection{\pending{Exercise 3.12}}% \label{sub:exercise-3.12} Assume that $f$ and $g$ are functions and show that @@ -3704,11 +3729,31 @@ Assume that $f$ and $g$ are functions and show that \begin{proof} - TODO + Let $f$ and $g$ be \nameref{ref:function}s. + + \paragraph{($\Rightarrow$)}% + + Suppose $f \subseteq g$. + Then for all \nameref{ref:ordered-pair}s $\left< x, y \right>$, + $\left< x, y \right> \in f$ implies $\left< x, y \right> \in g$. + Thus every $x \in \dom{f}$ must be a member of $\dom{g}$. + Likewise, by definition of a function, $f$ and $g$ are single-valued. + Thus $f(x) = y$ and $g(x) = y$. + Since $x$ is an arbitrary element in the domain of $f$, it follows + $(\forall x \in \dom{f}) f(x) = y = g(x)$. + + \paragraph{($\Leftarrow$)}% + + Suppose $\dom{f} \subseteq \dom{g}$ and + $(\forall x \in \dom{f}) f(x) = g(x)$. + Let $\left< x, y \right> \in f$. + By hypothesis, $x \in \dom{g}$ and $y = f(x) = g(x)$. + Thus $\left< x, y \right> \in g$ as well. + Therefore $f \subseteq g$. \end{proof} -\subsection{\sorry{Exercise 3.13}}% +\subsection{\pending{Exercise 3.13}}% \label{sub:exercise-3.13} Assume that $f$ and $g$ are functions with $f \subseteq g$ and @@ -3717,11 +3762,17 @@ Show that $f = g$. \begin{proof} - TODO + Let $f$ and $g$ be functions such that $f \subseteq g$ and + $\dom{g} \subseteq \dom{f}$. + By \nameref{sub:exercise-3.12}, it follows that $\dom{f} \subseteq \dom{g}$ + and $(\forall x \in \dom{f}) f(x) = g(x)$. + Since $\dom{g} \subseteq \dom{f}$ and $\dom{f} \subseteq \dom{g}$, it follows + that $\dom{g} = \dom{f}$. + By \nameref{sub:exercise-3.11}, $f = g$. \end{proof} -\subsection{\sorry{Exercise 3.14}}% +\subsection{\pending{Exercise 3.14}}% \label{sub:exercise-3.14} Assume that $f$ and $g$ are functions. @@ -3734,35 +3785,116 @@ Assume that $f$ and $g$ are functions. \begin{proof} - TODO + Assume $f$ and $g$ are functions. + + \paragraph{(a)}% + + Consider $f \cap g$. + By definition of the intersection of sets, $f \cap g \subseteq f$. + By \nameref{sub:exercise-3.12}, $\dom{(f \cap g)} = \dom{f}$ and + $(\forall x \in \dom{(f \cap g)} (f \cap g)(x) = f(x)$. + The latter conjunct shows that, since $f$ is single-valued, $f \cap g$ must + also be single-valued. + In other words, $f \cap g$ is a function. + + \paragraph{(b)}% + + \subparagraph{($\Rightarrow$)}% + + Suppose $f \cup g$ is a function. + Let $x \in (\dom{f}) \cap (\dom{g})$. + That is, $x \in \dom{f}$ and $x \in \dom{g}$. + Then there exists only one $y_1$ such that $\left< x, y_1 \right> \in f$. + Likewise there exists only one $y_2$ such that + $\left< x, y_2 \right> \in g$. + But $\left< x, y_1 \right> \in f \cup g$ and + $\left< x, y_2 \right> \in f \cup g$. + Since $f \cup g$ is single-valued, it follows $y_1 = y_2$. + That is, $f(x) = g(x)$. + + \subparagraph{($\Leftarrow$)}% + + Suppose $f(x) = g(x)$ for every $x \in (\dom{f}) \cap (\dom{g})$. + Let $x \in \dom{(f \cup g)}$. + There are three cases to consider: + + \begin{enumerate}[(i)] + \item Suppose $x \in \dom{f}$ but not in $\dom{g}$. + Since $f$ is a function, it follows $f \cup g$ has only one value $y$ + such that $\left< x, y \right> \in f \cup g$. + \item Suppose $x \in \dom{g}$ but not in $\dom{f}$. + Again, since $g$ is a function, it follows $f \cup g$ has only one + value $y$ such that $\left< x, y \right> \in f \cup g$. + \item Suppose $x \in \dom{f}$ and $x \in \dom{g}$. + By hypothesis, $f(x) = g(x)$ meaning there is only one value $y$ such + that $\left< x, y \right> \in f \cup g$. + \end{enumerate} + + The above cases are exhaustive. + Together they imply that $f \cup g$ is single-valued, i.e. a function. \end{proof} -\subsection{\sorry{Exercise 3.15}}% +\subsection{\pending{Exercise 3.15}}% \label{sub:exercise-3.15} Let $\mathscr{A}$ be a set of functions such that for any $f$ and $g$ in $\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$. -Show that $\bigcup \mathscr{A}$ is a function. +Show that $\bigcup{\mathscr{A}}$ is a function. \begin{proof} - TODO + Let $\mathscr{A}$ be a set of \nameref{ref:function}s such that for any $f$ + and $g$ in $\mathscr{A}$, either $f \subseteq g$ or $g \subseteq f$. + Let $x \in \dom{\bigcup{\mathscr{A}}}$. + Then there exists some $y_1$ such that + $\left< x, y_1 \right> \in \bigcup{\mathscr{A}}$. + Suppose there also exists some $y_2$ such that + $\left< x, y_2 \right> \in \bigcup{\mathscr{A}}$. + + By definition of the union of sets, there exists some function + $f \in \mathscr{A}$ such that $\left< x, y_1 \right> \in f$. + Likewise there exists some function $g \in \mathscr{A}$ such that + $\left< x, y_2 \right> \in g$. + There are two cases to consider: + + \paragraph{Case 1}% + + Suppose $f \subseteq g$. + Then $\left< x, y_1 \right>, \left< x, y_2 \right> \in g$. + Since $g$ is a function, i.e. single-valued, $y_1 = y_2$. + + \paragraph{Case 2}% + + Suppose $g \subseteq f$. + Then $\left< x, y_1 \right>, \left< x, y_2 \right> \in f$. + Since $f$ is a function, i.e. single-valued, $y_1 = y_2$. + + \paragraph{Conclusion}% + + Since the above two cases applies for all + $x \in \dom{\bigcup{\mathscr{A}}}$ and appropriate choices of $f$ and $g$, + it follows $\bigcup{\mathscr{A}}$ is indeed a function. \end{proof} -\subsection{\sorry{Exercise 3.16}}% +\subsection{\unverified{Exercise 3.16}}% \label{sub:exercise-3.16} Show that there is no set to which every function belongs. \begin{proof} - TODO + Every \nameref{ref:relation} consisting of a single \nameref{ref:ordered-pair} + is, by definition, a \nameref{ref:function}. + By \nameref{sub:exercise-3.4}, there is no set to which every ordered pair + belongs. + Thus there is no set to which every function of the described type belongs + either, let alone a set to which \textit{every} function belongs. \end{proof} -\subsection{\sorry{Exercise 3.17}}% +\subsection{\pending{Exercise 3.17}}% \label{sub:exercise-3.17} Show that the composition of two single-rooted sets is again single-rooted. @@ -3770,11 +3902,36 @@ Conclude that the composition of two one-to-one functions is again one-to-one. \begin{proof} - TODO + Let $F$ and $G$ be two single-rooted sets. + Consider $F \circ G$. + By definition of the \nameref{ref:composition} of sets, + \begin{equation} + \label{sub:exercise-3.17-eq1} + F \circ G = \{\left< u, v \right> \mid \exists t(uGt \land tFv)\}. + \end{equation} + Consider any $v \in \ran{(F \circ G)}$. + By definition of the \nameref{ref:range} of a \nameref{ref:relation}, there + exists some $u_1$ such that $\left< u_1, v \right> \in F \circ G$. + Let $u_2$ be a set such that $\left< u_2, v \right> \in F \circ G$. + + By \eqref{sub:exercise-3.17-eq1}, there exists a set $t_1$ such that + $\left< u_1, t_1 \right> \in G$ and $\left< t_1, v \right> \in F$. + Likewise, there exists a set $t_2$ such that + $\left< u_2, t_2 \right> \in G$ and $\left< t_2, v \right> \in F$. + But $F$ is single-rooted, meaning $t_1 = t_2$. + Likewise, because $G$ is single-rooted, $u_1 = u_2$. + Thus $F \circ G$ must also be single-rooted. + + \suitdivider + + Let $f$ and $g$ be one-to-one functions. + By \nameref{sub:theorem-3h}, $f \circ g$ is single-valued. + By the above, $f \circ g$ is single-rooted. + Thus $f \circ g$ is one-to-one. \end{proof} -\subsection{\sorry{Exercise 3.18}}% +\subsection{\pending{Exercise 3.18}}% \label{sub:exercise-3.18} Let $R$ be the set @@ -3785,11 +3942,25 @@ Evaluate the following: $R \circ R$, $R \restriction \{1\}$, \begin{proof} - TODO + \begin{enumerate}[(i)] + \item $R \circ R = \{ + \left< 0, 2 \right>, + \left< 0, 3 \right>, + \left< 0, 3 \right>, + \left< 1, 3 \right> + \}$. + \item $R \restriction \{1\} = \{ + \left< 1, 2 \right>, + \left< 1, 3 \right> + \}$. + \item $R^{-1} \restriction \{1\} = \{\left< 1, 0 \right>\}$. + \item $\img{R}{\{1\}} = \{2, 3\}$. + \item $\img{R^{-1}}{\{1\}} = \{0\}$. + \end{enumerate} \end{proof} -\subsection{\sorry{Exercise 3.19}}% +\subsection{\pending{Exercise 3.19}}% \label{sub:exercise-3.19} Let $$A = \{ @@ -3804,33 +3975,80 @@ Evaluate each of the following: $A(\emptyset)$, $\img{A}{\emptyset}$, \begin{proof} - TODO + \begin{enumerate}[(i)] + \item $A(\emptyset) = \{\emptyset, \{\emptyset\}\}$. + \item $\img{A}{\emptyset} = \emptyset$. + \item $\img{A}{\{\emptyset\}} = \{\{\emptyset, \{\emptyset\}\}\}$. + \item $\img{A}{\{\emptyset, \{\emptyset\}\}} = + \{\{\emptyset, \{\emptyset\}\}, \emptyset\}$. + \item $A^{-1} = \{ + \left< \{\emptyset, \{\emptyset\}\}, \emptyset \right>, + \left< \emptyset, \{\emptyset\} \right> + \}$. + \item $A \circ A = + \{\left< \{\emptyset\}, \{\emptyset, \{\emptyset\}\} \right>\}$. + \item $A \restriction \emptyset = \emptyset$ + \item $A \restriction \{\emptyset\} = + \{\left< \emptyset, \{\emptyset, \{\emptyset\}\} \right>\}$. + \item $A \restriction \{\emptyset, \{\emptyset\}\} = A$. + \item $\bigcup\bigcup A = + \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$. + \end{enumerate} \end{proof} -\subsection{\sorry{Exercise 3.20}}% +\subsection{\pending{Exercise 3.20}}% \label{sub:exercise-3.20} Show that $F \restriction A = F \cap (A \times \ran{F})$. \begin{proof} - TODO + Let $F$ and $A$ be arbitrary sets. + By definition of the \nameref{ref:restriction}, intersection, + \nameref{ref:range}, and \nameref{sub:cartesian-product} of sets, + Then + \begin{align*} + F \restriction A + & = \{\left< u, v \right> \mid uFv \land u \in A\} \\ + & = \{\left< u, v \right> \mid + uFv \land u \in A \land v \in \ran{F}\} \\ + & = \{\left< u, v \right> \mid uFv\} \cap + \{\left< u, v \right> \mid u \in A \land v \in \ran{F}\} \\ + & = F \cap \{\left< u, v \right> \mid u \in A \land v \in \ran{F}\} \\ + & = F \cap (A \times \ran{F}). + \end{align*} \end{proof} -\subsection{\sorry{Exercise 3.21}}% +\subsection{\pending{Exercise 3.21}}% \label{sub:exercise-3.21} Show that $(R \circ S) \circ T = R \circ (S \circ T)$. \begin{proof} - TODO + Let $R$, $S$, and $T$ be arbitrary sets. + By definition of the \nameref{ref:composition} of sets, + \begin{align*} + (R \circ S) \circ T + & = \{\left< u, v \right> \mid + \exists t(u(R \circ S)t \land tTv)\} \\ + & = \{\left< u, v \right> \mid + \exists t((\exists a, uRa \land aSt) \land tTv)\} \\ + & = \{\left< u, v \right> \mid + \exists t, \exists a, (uRa \land aSt \land tTv)\} \\ + & = \{\left< u, v \right> \mid + \exists a, \exists t, (uRa \land aSt \land tTv)\} \\ + & = \{\left< u, v \right> \mid + \exists a(uRa \land (\exists t, aSt \land tTv))\} \\ + & = \{\left< u, v \right> \mid \exists a(uRa \land a(S \circ T)v)\} \\ + & = R \circ (S \circ T). + \end{align*} \end{proof} -\subsection{\sorry{Exercise 3.22}}% +\subsection{\pending{Exercise 3.22}}% \label{sub:exercise-3.22} Show that the following are correct for any sets. @@ -3844,11 +4062,55 @@ Show that the following are correct for any sets. \begin{proof} - TODO + Let $A$, $B$, $F$, $G$, and $Q$ be arbitrary sets. + + \paragraph{(a)}% + + Suppose $A \subseteq B$. + Let $x \in \img{F}{A}$. + By definition of the \nameref{ref:image} of a set, + $\img{F}{A} = \{v \mid (\exists u \in A) uFv\}$. + Thus there exists some $u \in A$ such that $uFx$. + But $A \subseteq B$ meaning $u \in B$. + That is, $(\exists u \in B)uFx$. + Thus $$x \in \{v \mid (\exists u \in B)uFv\} = \img{F}{B}.$$ + + \paragraph{(b)}% + + By definition of the \nameref{ref:composition} and \nameref{ref:image} of a + set, + \begin{align*} + \img{(F \circ G)}{A} + & = \{v \mid (\exists u \in A) u(F \circ G)v\} \\ + & = \{v \mid (\exists u \in A) \left< u, v \right> \in F \circ G\} \\ + & = \{v \mid (\exists u \in A) + \left< u, v \right> \in \{\left< b, c \right> \mid + \exists a(bGa \land aFc)\}\} \\ + & = \{v \mid \exists u \in A, \exists a, uGa \land aFv\} \\ + & = \{v \mid \exists a, \exists u \in A, uGa \land aFv\} \\ + & = \{v \mid \exists a, (\exists u \in A, uGa) \land aFv\} \\ + & = \{v \mid \exists a \in \{w \mid (\exists u \in A)uGw\}, aFv\} \\ + & = \{v \mid (\exists a \in \img{G}{A}) aFv\} \\ + & = \img{F}{\img{G}{A}}. + \end{align*} + + \paragraph{(c)}% + + By definition of the \nameref{ref:restriction} of a set, + \begin{align*} + Q \restriction (A \cup B) + & = \{\left< u, v \right> \mid uQv \land u \in A \cup B\} \\ + & = \{\left< u, v \right> \mid uQv \land (u \in A \lor u \in B)\} \\ + & = \{\left< u, v \right> \mid + (uQv \land u \in A) \lor (uQv \land u \in B)\} \\ + & = \{\left< u, v \right> \mid uQv \land u \in A\} \cup + \{\left< u, v \right> \mid uQv \land u \in B\} \\ + & = (Q \restriction A) \cup (Q \restriction B). + \end{align*} \end{proof} -\subsection{\sorry{Exercise 3.23}}% +\subsection{\pending{Exercise 3.23}}% \label{sub:exercise-3.23} Let $I_A$ be the identity function on the set $A$. @@ -3858,11 +4120,53 @@ Show that for any sets $B$ and $C$, \begin{proof} - TODO + Let $I_A$ be the identity function on the set $A$. + That is, $I_A = \{\left< u, u \right> \mid u \in A\}$. + Let $B$ and $C$ be any sets. + We show that (i) $B \circ I_A = B \restriction A$ and (ii) + $\img{I_A}{C} = A \cap C$. + + \paragraph{(i)}% + + We show that $B \circ I_A \subseteq B \restriction A$ and + $B \restriction A \subseteq B \circ I_A$. + + \subparagraph{($\subseteq$)}% + + Let $\left< x, y \right> \in B \circ I_A$. + By definition of the \nameref{ref:composition} of sets, + there exists some $t$ such that $xBt$ and $t(I_A)y$. + By definition of the identity function, $I_A(t) = y$ implies $t = y$. + Thus $xBy$. + By hypothesis, $x \in \dom{(B \circ I_A)}$. + Therefore $x \in \dom{I_A} = A$. + Thus + $$\left< x, y \right> + \in \{\left< u, v \right> \mid u \in A \land uBv\} + = B \restriction A.$$ + + \subparagraph{($\supseteq$)}% + + Let $\left< x, y \right> \in B \restriction A$. + By definition of the \nameref{ref:restriction} of sets, + $x \in A$ and $xBy$. + But $I_A(x) = x$ meaning $\left< I_A(x), y \right> \in B$. + In other words, $\left< x, y \right> \in B \circ I_A$. + + \paragraph{(ii)}% + + By definition of the \nameref{ref:image} of sets, + \begin{align*} + \img{I_A}{C} + & = \{v \mid (\exists u \in C) \left< u, v \right> \in I_A\} \\ + & = \{v \mid \exists u \in C, u \in A \land u = v\} \\ + & = \{v \mid v \in C \land v \in A\} \\ + & = C \cap A. + \end{align*} \end{proof} -\subsection{\sorry{Exercise 3.24}}% +\subsection{\pending{Exercise 3.24}}% \label{sub:exercise-3.24} Show that for a function $F$, @@ -3870,11 +4174,20 @@ Show that for a function $F$, \begin{proof} - TODO + Let $F$ be a function. + By definition of the \nameref{ref:inverse} of a set, + \begin{align*} + \img{F^{-1}}{A} + & = \{x \mid (\exists y \in A) yF^{-1}x\} \\ + & = \{x \mid (\exists y \in A) xFy\} \\ + & = \{x \mid (\exists y \in A) \left< x, y \right> \in F\} \\ + & = \{x \mid \exists x \in F, F(x) \in A\} \\ + & = \{x \in \dom{F} \mid F(x) \in A\}. + \end{align*} \end{proof} -\subsection{\sorry{Exercise 3.25}}% +\subsection{\pending{Exercise 3.25}}% \label{sub:exercise-3.25} \begin{enumerate}[(a)] @@ -3887,22 +4200,38 @@ Show that for a function $F$, \begin{proof} - TODO + \paragraph{(b)}% + \label{par:exercise-3.25-b} + + Let $G$ be a function. + Let $\left< x, y \right> \in G \circ G^{-1}$. + By definition of the \nameref{ref:composition} of sets, there exists some + set $t$ such that $x(G^{-1})t$ and $tGy$. + By definition of the \nameref{ref:inverse} of a set, + $$x(G^{-1})t \iff tGx.$$ + By hypothesis, $G$ is single-valued. + Thus $x = y$. + That is, $G \circ G^{-1}$ is the identity function on $\ran{G}$. + + \paragraph{(a)}% + + This immediately follows from part \nameref{par:exercise-3.25-b}. \end{proof} -\subsection{\sorry{Exercise 3.26}}% +\subsection{\pending{Exercise 3.26}}% \label{sub:exercise-3.26} Prove the second halves of parts (a) and (b) of Theorem 3K. \begin{proof} - TODO + Refer to \nameref{sub:theorem-3k-a}, \nameref{sub:theorem-3k-b}, and + \nameref{sub:theorem-3k-c}. \end{proof} -\subsection{\sorry{Exercise 3.27}}% +\subsection{\pending{Exercise 3.27}}% \label{sub:exercise-3.27} Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$. @@ -3910,7 +4239,36 @@ Show that $\dom{(F \circ G)} = \img{G^{-1}}{\dom{F}}$ for any sets $F$ and $G$. \begin{proof} - TODO + Let $F$ and $G$ be arbitrary sets. + We show that each side of our desired equality is a subset of the other. + + \paragraph{($\subseteq$)}% + + Let $x \in \dom{(F \circ G)}$. + Then there exists a set $y$ such that $\left< x, y \right> \in F \circ G$. + By definition of the \nameref{ref:composition} of sets, there exists a set + $t$ such that $xGt$ and $tFy$. + Thus $t \in \dom{F}$. + Therefore + \begin{align*} + x + & \in \{v \mid (\exists t \in \dom{F}) vGt\} \\ + & = \{v \mid (\exists t \in \dom{F}) t(G^{-1})v\} \\ + & = \img{G^{-1}}{\dom{F}}. + \end{align*} + + \paragraph{($\supseteq$)}% + + Let $x \in \img{G^{-1}}{\dom{F}}$. + Then, by definition of the \nameref{ref:image} of a set, there exists some + $u \in \dom{F}$ such that $u(G^{-1})x$. + By definition of the \nameref{ref:inverse} of a set, $xGu$. + By definition of the \nameref{ref:domain} of a set, there exists some $t$ + such that $uFt$. + Thus $xGu \land uFt$. + By definition of the \nameref{ref:composition} of sets, + $\left< x, t \right> \in F \circ G$. + Therefore $x \in \dom{(F \circ G)}$. \end{proof} diff --git a/Bookshelf/Enderton/Set/Chapter_3.lean b/Bookshelf/Enderton/Set/Chapter_3.lean index 8e42954..f972e13 100644 --- a/Bookshelf/Enderton/Set/Chapter_3.lean +++ b/Bookshelf/Enderton/Set/Chapter_3.lean @@ -507,10 +507,18 @@ Assume that `F : A → B`, and that `A` is nonempty. There exists a function **iff** `F` is one-to-one. -/ theorem theorem_3j_a {F : Set.Relation α} {A B : Set α} - (hF : F.mapsInto A B) (hA : Set.Nonempty A) + (hF : F.isSingleValued ∧ F.mapsInto A B) (hA : Set.Nonempty A) : (∃ G : Set.Relation α, - G.mapsInto B A ∧ (∀ p ∈ G.comp F, p.1 = p.2)) ↔ F.isOneToOne := by - sorry + G.isSingleValued ∧ G.mapsInto B A ∧ + (∀ p ∈ G.comp F, p.1 = p.2)) ↔ F.isOneToOne := by + apply Iff.intro + · intro ⟨G, ⟨hG₁, hG₂, hI⟩⟩ + refine ⟨hF.left, ?_⟩ + show F.isSingleRooted + intro y hy + have ⟨x, hx⟩ := ran_exists hy + sorry + · sorry /-- #### Theorem 3J (b) @@ -519,9 +527,10 @@ Assume that `F : A → B`, and that `A` is nonempty. There exists a function `B` **iff** `F` maps `A` onto `B`. -/ theorem theorem_3j_b {F : Set.Relation α} {A B : Set α} - (hF : F.mapsInto A B) (hA : Set.Nonempty A) + (hF : F.isSingleValued ∧ F.mapsInto A B) (hA : Set.Nonempty A) : (∃ H : Set.Relation α, - H.mapsInto B A ∧ (∀ p ∈ F.comp H, p.1 = p.2)) ↔ F.mapsOnto A B := by + H.isSingleValued ∧ H.mapsInto B A ∧ + (∀ p ∈ F.comp H, p.1 = p.2)) ↔ F.mapsOnto A B := by sorry end diff --git a/preamble.tex b/preamble.tex index fc384eb..2017eee 100644 --- a/preamble.tex +++ b/preamble.tex @@ -131,12 +131,16 @@ \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} +\newcommand{\dom}[1]{\textop{dom}{#1}} +\newcommand{\fld}[1]{\textop{fld}{#1}} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\icc}[2]{\left[#1, #2\right]} \newcommand{\ico}[2]{\left[#1, #2\right)} +\newcommand{\img}[2]{#1\!\left\llbracket#2\right\rrbracket} \newcommand{\ioc}[2]{\left(#1, #2\right]} \newcommand{\ioo}[2]{\left(#1, #2\right)} \newcommand{\powerset}[1]{\mathscr{P}#1} +\newcommand{\ran}[1]{\textop{ran}{#1}} \newcommand{\textop}[1]{\mathop{\text{#1}}} \newcommand{\ubar}[1]{\text{\b{$#1$}}}