Enderton. Prove ordering theorems and fix injective successor proof.
parent
5dfb2f12cf
commit
77684120d9
|
@ -119,7 +119,8 @@ The \textbf{composition} of sets $F$ and $G$ is
|
|||
\section{\defined{Connected}}%
|
||||
\hyperlabel{ref:connected}
|
||||
|
||||
A binary relation $R$ on $A$ is \textbf{connected} if for distinct $x, y \in A$, either $xRy$ or $yRx$.
|
||||
A binary relation $R$ on $A$ is \textbf{connected} if for distinct $x, y \in A$,
|
||||
either $xRy$ or $yRx$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
|
@ -340,7 +341,8 @@ The \textbf{inverse} of a set $F$ is the set
|
|||
\section{\defined{Irreflexive}}%
|
||||
\hyperlabel{ref:irreflexive}
|
||||
|
||||
A binary relation $R$ on set $A$ is \textbf{irreflexive} if there is no $x \in A$ for which $xRx$.
|
||||
A binary relation $R$ on set $A$ is \textbf{irreflexive} if there is no
|
||||
$x \in A$ for which $xRx$.
|
||||
|
||||
\begin{definition}
|
||||
|
||||
|
@ -3096,7 +3098,7 @@ If not, then under what conditions does equality hold?
|
|||
\hyperlabel{sub:lemma-1}
|
||||
\hyperlabel{sub:one-to-one-inverse}
|
||||
|
||||
\begin{lemma}[1]
|
||||
\begin{lemma}
|
||||
|
||||
For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||
|
||||
|
@ -3814,7 +3816,7 @@ If not, then under what conditions does equality hold?
|
|||
Let $R$ be a linear ordering on $A$.
|
||||
\begin{enumerate}[(i)]
|
||||
\item There is no $x$ for which $xRx$.
|
||||
\item For distinct $x$ and $y$ in $A$, either $xRy$ or $yRx$.
|
||||
\item For distinct $x$ and $y$ in $A$, either $xRy$ or $yRx$ (but not both).
|
||||
\end{enumerate}
|
||||
|
||||
\end{theorem}
|
||||
|
@ -3838,7 +3840,7 @@ If not, then under what conditions does equality hold?
|
|||
Let $x, y \in A$ such that $x \neq y$.
|
||||
By definition, $R$ is \nameref{ref:trichotomous}.
|
||||
Thus only one of $$xRy, \quad x = y, \quad yRx$$ hold.
|
||||
By hypothesis $x \neq y$ meaning either $xRy$ or $yRx$.
|
||||
By hypothesis $x \neq y$ meaning either $xRy$ or $yRx$ (but not both).
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -6134,44 +6136,6 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\section{Peano's Postulates}%
|
||||
\hyperlabel{sec:peanos-postulates}
|
||||
|
||||
\subsection{\verified{Theorem 4D}}%
|
||||
\hyperlabel{sub:theorem-4d}
|
||||
|
||||
\begin{theorem}[4D]
|
||||
|
||||
$\langle \omega, \sigma, 0 \rangle$ is a Peano system.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat}
|
||||
|
||||
Note $\sigma$ is defined as $\sigma = \{\pair{n, n^+} \mid n \in \omega\}$.
|
||||
To prove $\langle \omega, \sigma, 0 \rangle$ is a \nameref{ref:peano-system},
|
||||
we must show that (i) $0 \not\in \ran{S}$, (ii) $\sigma$ is one-to-one, and
|
||||
(iii) every subset $A$ of $\omega$ containing $0$ and closed under $\sigma$
|
||||
is $\omega$ itself.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
This follows immediately from \nameref{sub:theorem-4c}.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
Let $n^+ \in \ran{\sigma}$.
|
||||
By construction, there exists some $m_1 \in \omega$ such that $m_1 = n^+$.
|
||||
Suppose there exists some $m_2 \in \omega$ such that $m_2 = n^+$.
|
||||
By definition of the \nameref{ref:successor}, $m_1 = n \cup \{n\} = m_2$.
|
||||
By the \nameref{ref:extensionality-axiom}, $m_1 = m_2$.
|
||||
Thus $\sigma$ is one-to-one.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
This follows immediately from \nameref{sub:theorem-4b}.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Theorem 4E}}%
|
||||
\hyperlabel{sub:theorem-4e}
|
||||
|
||||
|
@ -6260,6 +6224,50 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Theorem 4D}}%
|
||||
\hyperlabel{sub:theorem-4d}
|
||||
|
||||
\begin{theorem}[4D]
|
||||
|
||||
$\langle \omega, \sigma, 0 \rangle$ is a Peano system.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{note}
|
||||
Notice this theorem comes after \nameref{sub:theorem-4e}. Enderton introduces
|
||||
this theorem before \nameref{sub:theorem-4e} but its proof relies on
|
||||
\nameref{sub:theorem-4e}.
|
||||
\end{note}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat}
|
||||
|
||||
Note $\sigma$ is defined as $\sigma = \{\pair{n, n^+} \mid n \in \omega\}$.
|
||||
To prove $\langle \omega, \sigma, 0 \rangle$ is a \nameref{ref:peano-system},
|
||||
we must show that (i) $0 \not\in \ran{S}$, (ii) $\sigma$ is one-to-one, and
|
||||
(iii) every subset $A$ of $\omega$ containing $0$ and closed under $\sigma$
|
||||
is $\omega$ itself.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
This follows immediately from \nameref{sub:theorem-4c}.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
Let $m, n \in \omega$ and suppose $m^+ = n^+$.
|
||||
Then $\bigcup \left(m^+\right) = \bigcup \left(n^+\right)$.
|
||||
By \nameref{sub:theorem-4f}, every natural number is a
|
||||
\nameref{ref:transitive-set}.
|
||||
Therefore, by \nameref{sub:theorem-4e},
|
||||
$$\bigcup \left(m^+\right) = m = \bigcup \left(n^+\right) = n.$$
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
This follows immediately from \nameref{sub:theorem-4b}.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\unverified{Theorem 4G}}%
|
||||
\hyperlabel{sub:theorem-4g}
|
||||
|
||||
|
@ -6580,7 +6588,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\subsection{\verified{Left Additive Identity}}%
|
||||
\hyperlabel{sub:left-additive-identity}
|
||||
|
||||
\begin{lemma}[2]
|
||||
\begin{lemma}
|
||||
|
||||
For all $n \in \omega$, $A_0(n) = n$.
|
||||
In other words, $$0 + n = n.$$
|
||||
|
@ -6623,7 +6631,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\hyperlabel{sub:lemma-3}
|
||||
\hyperlabel{sub:succ-add-eq-add-succ}
|
||||
|
||||
\begin{lemma}[3]
|
||||
\begin{lemma}
|
||||
|
||||
For all $m, n \in \omega$, $A_{m^+}(n) = A_m(n^+)$.
|
||||
In other words, $$m^+ + n = m + n^+.$$
|
||||
|
@ -6774,7 +6782,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\subsection{\verified{Zero Multiplicand}}%
|
||||
\hyperlabel{sub:zero-multiplicand}
|
||||
|
||||
\begin{lemma}[4]
|
||||
\begin{lemma}
|
||||
|
||||
For all $n \in \omega$, $M_0(n) = 0$.
|
||||
In other words, $$0 \cdot n = 0.$$
|
||||
|
@ -6824,7 +6832,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\subsection{\verified{Successor Distribution}}%
|
||||
\hyperlabel{sub:successor-distribution}
|
||||
|
||||
\begin{lemma}[5]
|
||||
\begin{lemma}
|
||||
|
||||
For all $m, n \in \omega$, $M_{m^+}(n) = M_m(n) + n$.
|
||||
In other words, $$m^+ \cdot n = m \cdot n + n.$$
|
||||
|
@ -6941,7 +6949,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\subsection{\verified{Successor Identity}}%
|
||||
\hyperlabel{sub:successor-identity}
|
||||
|
||||
\begin{lemma}[6]
|
||||
\begin{lemma}
|
||||
|
||||
For all $m \in \omega$, $A_m(1) = m^+$.
|
||||
In other words, $$m + 1 = m^+.$$
|
||||
|
@ -6994,7 +7002,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\subsection{\verified{Right Multiplicative Identity}}%
|
||||
\hyperlabel{sub:right-multiplicative-identity}
|
||||
|
||||
\begin{lemma}[7]
|
||||
\begin{lemma}
|
||||
|
||||
For all $m \in \omega$, $M_m(1) = m$.
|
||||
In other words, $$m \cdot 1 = m.$$
|
||||
|
@ -7160,10 +7168,10 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
\section{Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}%
|
||||
\hyperlabel{sec:ordering-natural-numbers}
|
||||
|
||||
\subsection{\unverified{Ordering on Successor}}%
|
||||
\subsection{\verified{Ordering on Successor}}%
|
||||
\hyperlabel{sub:ordering-successor}
|
||||
|
||||
\begin{lemma}[8]
|
||||
\begin{lemma}
|
||||
|
||||
Let $m, n \in \omega$.
|
||||
Then $m < n^+ \iff m \leq n$.
|
||||
|
@ -7172,6 +7180,8 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Std/Data/Nat/Lemmas}{Nat.lt\_succ}
|
||||
|
||||
Let $m, n \in \omega$.
|
||||
By \nameref{ref:ordering-natural-numbers},
|
||||
\begin{align*}
|
||||
|
@ -7185,27 +7195,144 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Lemma 4L}}%
|
||||
\hyperlabel{sub:lemma-4l}
|
||||
\subsection{\unverified{Members of Natural Numbers}}%
|
||||
\hyperlabel{sub:members-natural-numbers}
|
||||
|
||||
\begin{lemma}[4L]
|
||||
\begin{lemma}
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$
|
||||
\item No natural number is a member of itself.
|
||||
\end{enumerate}
|
||||
Every natural number is the set of all smaller natural numbers.
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
Let $n \in \omega$.
|
||||
Consider $m \in n$.
|
||||
By \nameref{sub:theorem-4b}, $\omega$ is a \nameref{ref:transitive-set}.
|
||||
Thus $m \in n$ implies $m \in \omega$.
|
||||
Thus $m \in n \iff m \in \omega \land m \in n$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{%
|
||||
\subsection{\pending{Lemma 4L(a)}}%
|
||||
\hyperlabel{sub:lemma-4l-a}
|
||||
|
||||
\begin{lemma}[4L(a)]
|
||||
|
||||
For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Std/Data/Nat/Lemmas}{Nat.succ\_lt\_succ\_iff}
|
||||
|
||||
Let $m$ and $n$ be \nameref{ref:natural-number}s.
|
||||
|
||||
\paragraph{($\Rightarrow$)}%
|
||||
|
||||
Suppose $m \in n$.
|
||||
TODO
|
||||
|
||||
\paragraph{($\Leftarrow$)}%
|
||||
|
||||
Suppose $m^+ \in n^+$.
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Lemma 4L(b)}}%
|
||||
\hyperlabel{sub:lemma-4l-b}
|
||||
|
||||
\begin{lemma}[4L(b)]
|
||||
|
||||
No natural number is a member of itself.
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Init/Prelude}{Nat.lt\_irrefl}
|
||||
|
||||
Define
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:lemma-4l-b-eq1}
|
||||
S = \{n \in \omega \mid n \not\in n\}.
|
||||
\end{equation}
|
||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||
Afterwards we show that (iii) our theorem holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:lemma-4l-b-i}
|
||||
|
||||
By definition, $0 = \emptyset$.
|
||||
It obviously holds that $\emptyset \not\in \emptyset$ since $\emptyset$,
|
||||
by definition, has no members.
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:lemma-4l-b-ii}
|
||||
|
||||
Suppose $n \in S$.
|
||||
By \eqref{sub:lemma-4l-b-eq1}, $n \not\in n$.
|
||||
By \nameref{sub:lemma-4l-a}, it follows $n^+ \not\in n^+$.
|
||||
Thus $n^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:lemma-4l-b-i} and \nameref{par:lemma-4l-b-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||
Thus for all $n \in \omega$, $n \not\in n$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{\texorpdfstring{$0$}{Zero} is the Least Natural Number}}%
|
||||
\hyperlabel{sub:zero-least-natural-number}
|
||||
|
||||
\begin{lemma}
|
||||
|
||||
For every natural number $n \neq 0$, $0 \in n$.
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_4}
|
||||
{Enderton.Set.Chapter\_4.zero\_least\_nat}
|
||||
|
||||
Let $$S = \{n \in \omega \mid n = 0 \lor 0 \in n\}.$$
|
||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||
Afterwards we show that (iii) our theorem holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:zero-least-natural-number-i}
|
||||
|
||||
This trivially holds by definition of $S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:zero-least-natural-number-ii}
|
||||
|
||||
Suppose $n \in S$.
|
||||
By definition of the \nameref{ref:successor} function, $n^+ = n \cup \{n\}$.
|
||||
Thus $n \in n^+$.
|
||||
By \nameref{sub:theorem-4f}, $n^+$ is a \nameref{ref:transitive-set}.
|
||||
Since $0 \in n$ and $n \in n^+$, it follows $0 \in n^+$.
|
||||
Thus $n^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:zero-least-natural-number-i} and
|
||||
\nameref{par:zero-least-natural-number-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||
Thus for all $n \in \omega$, either $n = 0$ or $0 \in n$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{%
|
||||
Trichotomy Law for \texorpdfstring{$\omega$}{Natural Numbers}}}%
|
||||
\hyperlabel{sub:trichotomy-law-natrual-numbers}
|
||||
\hyperlabel{sub:trichotomy-law-natural-numbers}
|
||||
|
||||
\begin{theorem}
|
||||
|
||||
|
@ -7216,25 +7343,111 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_4}
|
||||
{Enderton.Set.Chapter\_4.trichotomy\_law\_for\_nat}
|
||||
|
||||
Let $n \in \omega$ and define
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:trichotomy-law-natural-numbers-eq1}
|
||||
S = \{m \in \omega \mid m \in n \lor m = n \lor n \in m\}.
|
||||
\end{equation}
|
||||
We prove that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$.
|
||||
Afterwards we show that (iii) our theorem holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:trichotomy-law-natural-numbers-i}
|
||||
|
||||
If $n = 0$, then it trivially follows $0 \in S$.
|
||||
Otherwise \nameref{sub:zero-least-natural-number} implies $0 \in n$.
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:trichotomy-law-natural-numbers-ii}
|
||||
|
||||
Suppose $m \in S$.
|
||||
By \eqref{sub:trichotomy-law-natural-numbers-eq1}, there are three cases to
|
||||
consider:
|
||||
|
||||
\subparagraph{Case 1}%
|
||||
|
||||
Suppose $m \in n$.
|
||||
By \nameref{sub:lemma-4l-a}, $m^+ \in n^+ = n \cup \{n\}$.
|
||||
By definition of the \nameref{ref:successor}, $m^+ \in n$ or $m^+ = n$.
|
||||
Either way, $m^+ \in S$.
|
||||
|
||||
\subparagraph{Case 2}%
|
||||
|
||||
Suppose $m = n$.
|
||||
Since $m \in m^+$, it follows $n \in m^+$.
|
||||
Thus $m^+ \in S$.
|
||||
|
||||
\subparagraph{Case 3}%
|
||||
|
||||
Suppose $n \in m$.
|
||||
Then $n \in m \cup \{m\} = m^+$.
|
||||
Thus $m^+ \in S$.
|
||||
|
||||
\subparagraph{Conclusion}%
|
||||
|
||||
Since the above three cases are exhaustive, it follows $m^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:trichotomy-law-natural-numbers-i} and
|
||||
\nameref{par:trichotomy-law-natural-numbers-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||
Thus for all $m, n \in \omega$, $$m \in n \lor m = n \lor n \in m.$$
|
||||
We now prove that
|
||||
$$\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}$$
|
||||
is \nameref{ref:irreflexive} and \nameref{ref:connected}.
|
||||
Irreflexivity immediately follows from \nameref{sub:lemma-4l-b}.
|
||||
Connectivity follows immediately from the fact $S = \omega$.
|
||||
Furthermore, it is not possible both $m \in n$ and $n \in m$ since, by
|
||||
\nameref{sub:theorem-4f}, $m$ and $n$ are \nameref{ref:transitive-set}s.
|
||||
This would otherwise imply $m \in m$, an immediate contradiction to
|
||||
irreflexivity.
|
||||
Thus $\in_\omega$ is a \nameref{ref:trichotomous} relation.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{%
|
||||
\subsection{\verified{%
|
||||
Linear Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}}%
|
||||
\hyperlabel{sub:linear-ordering-natural-numbers}
|
||||
|
||||
\begin{theorem}
|
||||
|
||||
Relation
|
||||
$$\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}$$
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:linear-ordering-natural-numbers-eq1}
|
||||
\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}
|
||||
\end{equation}
|
||||
is a linear ordering on $\omega$.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_4}
|
||||
{Enderton.Set.Chapter\_4.linear\_ordering\_on\_nat}
|
||||
|
||||
By definition, \eqref{sub:linear-ordering-natural-numbers-eq1} is a
|
||||
\nameref{ref:linear-ordering} on $\omega$ if it is (i) transitive and
|
||||
(ii) trichotomous.
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
Suppose $p, q, r \in \omega$ such that $p \in q$ and $q \in r$.
|
||||
By \nameref{sub:theorem-4f}, $p$, $q$, and $r$ are
|
||||
\nameref{ref:transitive-set}s.
|
||||
By definition of a transitive set, it follows $p \in r$.
|
||||
Hence \eqref{sub:linear-ordering-natural-numbers-eq1} is
|
||||
\nameref{ref:transitive}.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
By \nameref{sub:trichotomy-law-natural-numbers},
|
||||
\eqref{sub:linear-ordering-natural-numbers-eq1} is trichotomous.
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
@ -7670,8 +7883,8 @@ Show that each natural number is either even or odd, but never both.
|
|||
|
||||
Suppose $n$ is even and not odd.
|
||||
Then there exists some $m \in \omega$ such that $2 \cdot m = n$.
|
||||
Since the successor operation is one-to-one, $(2 \cdot m)^+ = n^+$.
|
||||
Thus $n^+$ is odd.
|
||||
Therefore $(2 \cdot m)^+ = n^+$.
|
||||
Hence $n^+$ is odd.
|
||||
|
||||
For the sake of contradiction, suppose $n^+$ is even.
|
||||
Then there exists some $p$ such that $2 \cdot p = n^+$.
|
||||
|
@ -7694,7 +7907,8 @@ Show that each natural number is either even or odd, but never both.
|
|||
& = q^+ + q^+ \\
|
||||
& = (q^+ + q)^+. & \textref{sub:theorem-4i}
|
||||
\end{align*}
|
||||
Since the successor operation is one-to-one, $n = q^+ + q$.
|
||||
By \nameref{sub:theorem-4d}, the \nameref{ref:successor} operation is
|
||||
one-to-one meaning $n = q^+ + q$.
|
||||
But then
|
||||
\begin{align*}
|
||||
n
|
||||
|
@ -7715,13 +7929,13 @@ Show that each natural number is either even or odd, but never both.
|
|||
|
||||
Suppose $n$ is odd and not even.
|
||||
Then there exists some $p \in \omega$ such that $(2 \cdot p)^+ = n$.
|
||||
Since the successor operation is one-to-one,
|
||||
$(2 \cdot p)^{++} = (2 \cdot p^+) = n^+$.
|
||||
Thus $n^+$ is even.
|
||||
Therefore $(2 \cdot p)^{++} = (2 \cdot p^+) = n^+$.
|
||||
Hence $n^+$ is even.
|
||||
|
||||
For the sake of contradiction, suppose $n^+$ is odd.
|
||||
Then there exists some $q$ such that $(2 \cdot q)^+ = n^+$.
|
||||
Since the successor operation is one-to-one, it follows $2 \cdot q = n$.
|
||||
By \nameref{sub:theorem-4d}, the \nameref{ref:successor} operation is
|
||||
one-to-one meaning $2 \cdot q = n$.
|
||||
But this implies $n$ is even, a contradiction.
|
||||
Thus our original assumption is wrong.
|
||||
That is, $n^+$ is even but not odd.
|
||||
|
|
|
@ -105,4 +105,41 @@ theorem exercise_4_14 (n : ℕ)
|
|||
have : even n := ⟨q, hq'⟩
|
||||
exact absurd this h
|
||||
|
||||
/-- #### Lemma 10
|
||||
|
||||
For every natural number `n ≠ 0`, `0 ∈ n`.
|
||||
-/
|
||||
theorem zero_least_nat (n : ℕ)
|
||||
: 0 = n ∨ 0 < n := by
|
||||
by_cases h : n = 0
|
||||
· left
|
||||
rw [h]
|
||||
· right
|
||||
have ⟨m, hm⟩ := Nat.exists_eq_succ_of_ne_zero h
|
||||
rw [hm]
|
||||
exact Nat.succ_pos m
|
||||
|
||||
/-- #### Trichotomy Law for ω
|
||||
|
||||
For any natural numbers `m` and `n`, exactly one of the three conditions
|
||||
```
|
||||
m ∈ n, m = n, n ∈ m
|
||||
```
|
||||
holds.
|
||||
-/
|
||||
theorem trichotomy_law_for_nat
|
||||
: IsAsymm ℕ LT.lt ∧ IsTrichotomous ℕ LT.lt :=
|
||||
⟨instIsAsymmLtToLT, instIsTrichotomousLtToLTToPreorderToPartialOrder⟩
|
||||
|
||||
/-- #### Linear Ordering on ω
|
||||
|
||||
Relation
|
||||
```
|
||||
∈_ω = {⟨m, n⟩ ∈ ω × ω | m ∈ n}
|
||||
```
|
||||
is a linear ordering on `ω`.
|
||||
-/
|
||||
theorem linear_ordering_on_nat
|
||||
: IsStrictTotalOrder ℕ LT.lt := isStrictTotalOrder_of_linearOrder
|
||||
|
||||
end Enderton.Set.Chapter_4
|
Loading…
Reference in New Issue