diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index bd31d82..de721ba 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -119,7 +119,8 @@ The \textbf{composition} of sets $F$ and $G$ is \section{\defined{Connected}}% \hyperlabel{ref:connected} -A binary relation $R$ on $A$ is \textbf{connected} if for distinct $x, y \in A$, either $xRy$ or $yRx$. +A binary relation $R$ on $A$ is \textbf{connected} if for distinct $x, y \in A$, + either $xRy$ or $yRx$. \begin{definition} @@ -340,7 +341,8 @@ The \textbf{inverse} of a set $F$ is the set \section{\defined{Irreflexive}}% \hyperlabel{ref:irreflexive} -A binary relation $R$ on set $A$ is \textbf{irreflexive} if there is no $x \in A$ for which $xRx$. +A binary relation $R$ on set $A$ is \textbf{irreflexive} if there is no + $x \in A$ for which $xRx$. \begin{definition} @@ -3096,7 +3098,7 @@ If not, then under what conditions does equality hold? \hyperlabel{sub:lemma-1} \hyperlabel{sub:one-to-one-inverse} -\begin{lemma}[1] +\begin{lemma} For any one-to-one function $F$, $F^{-1}$ is also one-to-one. @@ -3814,7 +3816,7 @@ If not, then under what conditions does equality hold? Let $R$ be a linear ordering on $A$. \begin{enumerate}[(i)] \item There is no $x$ for which $xRx$. - \item For distinct $x$ and $y$ in $A$, either $xRy$ or $yRx$. + \item For distinct $x$ and $y$ in $A$, either $xRy$ or $yRx$ (but not both). \end{enumerate} \end{theorem} @@ -3838,7 +3840,7 @@ If not, then under what conditions does equality hold? Let $x, y \in A$ such that $x \neq y$. By definition, $R$ is \nameref{ref:trichotomous}. Thus only one of $$xRy, \quad x = y, \quad yRx$$ hold. - By hypothesis $x \neq y$ meaning either $xRy$ or $yRx$. + By hypothesis $x \neq y$ meaning either $xRy$ or $yRx$ (but not both). \end{proof} @@ -6134,44 +6136,6 @@ Show that $<_L$ is a linear ordering on $A \times B$. \section{Peano's Postulates}% \hyperlabel{sec:peanos-postulates} -\subsection{\verified{Theorem 4D}}% -\hyperlabel{sub:theorem-4d} - -\begin{theorem}[4D] - - $\langle \omega, \sigma, 0 \rangle$ is a Peano system. - -\end{theorem} - -\begin{proof} - - \lean{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat} - - Note $\sigma$ is defined as $\sigma = \{\pair{n, n^+} \mid n \in \omega\}$. - To prove $\langle \omega, \sigma, 0 \rangle$ is a \nameref{ref:peano-system}, - we must show that (i) $0 \not\in \ran{S}$, (ii) $\sigma$ is one-to-one, and - (iii) every subset $A$ of $\omega$ containing $0$ and closed under $\sigma$ - is $\omega$ itself. - - \paragraph{(i)}% - - This follows immediately from \nameref{sub:theorem-4c}. - - \paragraph{(ii)}% - - Let $n^+ \in \ran{\sigma}$. - By construction, there exists some $m_1 \in \omega$ such that $m_1 = n^+$. - Suppose there exists some $m_2 \in \omega$ such that $m_2 = n^+$. - By definition of the \nameref{ref:successor}, $m_1 = n \cup \{n\} = m_2$. - By the \nameref{ref:extensionality-axiom}, $m_1 = m_2$. - Thus $\sigma$ is one-to-one. - - \paragraph{(iii)}% - - This follows immediately from \nameref{sub:theorem-4b}. - -\end{proof} - \subsection{\unverified{Theorem 4E}}% \hyperlabel{sub:theorem-4e} @@ -6260,6 +6224,50 @@ Show that $<_L$ is a linear ordering on $A \times B$. \end{proof} +\subsection{\verified{Theorem 4D}}% +\hyperlabel{sub:theorem-4d} + +\begin{theorem}[4D] + + $\langle \omega, \sigma, 0 \rangle$ is a Peano system. + +\end{theorem} + +\begin{note} + Notice this theorem comes after \nameref{sub:theorem-4e}. Enderton introduces + this theorem before \nameref{sub:theorem-4e} but its proof relies on + \nameref{sub:theorem-4e}. +\end{note} + +\begin{proof} + + \lean{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat} + + Note $\sigma$ is defined as $\sigma = \{\pair{n, n^+} \mid n \in \omega\}$. + To prove $\langle \omega, \sigma, 0 \rangle$ is a \nameref{ref:peano-system}, + we must show that (i) $0 \not\in \ran{S}$, (ii) $\sigma$ is one-to-one, and + (iii) every subset $A$ of $\omega$ containing $0$ and closed under $\sigma$ + is $\omega$ itself. + + \paragraph{(i)}% + + This follows immediately from \nameref{sub:theorem-4c}. + + \paragraph{(ii)}% + + Let $m, n \in \omega$ and suppose $m^+ = n^+$. + Then $\bigcup \left(m^+\right) = \bigcup \left(n^+\right)$. + By \nameref{sub:theorem-4f}, every natural number is a + \nameref{ref:transitive-set}. + Therefore, by \nameref{sub:theorem-4e}, + $$\bigcup \left(m^+\right) = m = \bigcup \left(n^+\right) = n.$$ + + \paragraph{(iii)}% + + This follows immediately from \nameref{sub:theorem-4b}. + +\end{proof} + \subsection{\unverified{Theorem 4G}}% \hyperlabel{sub:theorem-4g} @@ -6580,7 +6588,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \subsection{\verified{Left Additive Identity}}% \hyperlabel{sub:left-additive-identity} -\begin{lemma}[2] +\begin{lemma} For all $n \in \omega$, $A_0(n) = n$. In other words, $$0 + n = n.$$ @@ -6623,7 +6631,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \hyperlabel{sub:lemma-3} \hyperlabel{sub:succ-add-eq-add-succ} -\begin{lemma}[3] +\begin{lemma} For all $m, n \in \omega$, $A_{m^+}(n) = A_m(n^+)$. In other words, $$m^+ + n = m + n^+.$$ @@ -6774,7 +6782,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \subsection{\verified{Zero Multiplicand}}% \hyperlabel{sub:zero-multiplicand} -\begin{lemma}[4] +\begin{lemma} For all $n \in \omega$, $M_0(n) = 0$. In other words, $$0 \cdot n = 0.$$ @@ -6824,7 +6832,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \subsection{\verified{Successor Distribution}}% \hyperlabel{sub:successor-distribution} -\begin{lemma}[5] +\begin{lemma} For all $m, n \in \omega$, $M_{m^+}(n) = M_m(n) + n$. In other words, $$m^+ \cdot n = m \cdot n + n.$$ @@ -6941,7 +6949,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \subsection{\verified{Successor Identity}}% \hyperlabel{sub:successor-identity} -\begin{lemma}[6] +\begin{lemma} For all $m \in \omega$, $A_m(1) = m^+$. In other words, $$m + 1 = m^+.$$ @@ -6994,7 +7002,7 @@ Show that $<_L$ is a linear ordering on $A \times B$. \subsection{\verified{Right Multiplicative Identity}}% \hyperlabel{sub:right-multiplicative-identity} -\begin{lemma}[7] +\begin{lemma} For all $m \in \omega$, $M_m(1) = m$. In other words, $$m \cdot 1 = m.$$ @@ -7160,10 +7168,10 @@ Show that $<_L$ is a linear ordering on $A \times B$. \section{Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}% \hyperlabel{sec:ordering-natural-numbers} -\subsection{\unverified{Ordering on Successor}}% +\subsection{\verified{Ordering on Successor}}% \hyperlabel{sub:ordering-successor} -\begin{lemma}[8] +\begin{lemma} Let $m, n \in \omega$. Then $m < n^+ \iff m \leq n$. @@ -7172,6 +7180,8 @@ Show that $<_L$ is a linear ordering on $A \times B$. \begin{proof} + \lean{Std/Data/Nat/Lemmas}{Nat.lt\_succ} + Let $m, n \in \omega$. By \nameref{ref:ordering-natural-numbers}, \begin{align*} @@ -7185,27 +7195,144 @@ Show that $<_L$ is a linear ordering on $A \times B$. \end{proof} -\subsection{\sorry{Lemma 4L}}% -\hyperlabel{sub:lemma-4l} +\subsection{\unverified{Members of Natural Numbers}}% +\hyperlabel{sub:members-natural-numbers} -\begin{lemma}[4L] +\begin{lemma} - \begin{enumerate}[(a)] - \item For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$ - \item No natural number is a member of itself. - \end{enumerate} + Every natural number is the set of all smaller natural numbers. \end{lemma} \begin{proof} - TODO + Let $n \in \omega$. + Consider $m \in n$. + By \nameref{sub:theorem-4b}, $\omega$ is a \nameref{ref:transitive-set}. + Thus $m \in n$ implies $m \in \omega$. + Thus $m \in n \iff m \in \omega \land m \in n$. \end{proof} -\subsection{\sorry{% +\subsection{\pending{Lemma 4L(a)}}% +\hyperlabel{sub:lemma-4l-a} + +\begin{lemma}[4L(a)] + + For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$ + +\end{lemma} + +\begin{proof} + + \lean{Std/Data/Nat/Lemmas}{Nat.succ\_lt\_succ\_iff} + + Let $m$ and $n$ be \nameref{ref:natural-number}s. + + \paragraph{($\Rightarrow$)}% + + Suppose $m \in n$. + TODO + + \paragraph{($\Leftarrow$)}% + + Suppose $m^+ \in n^+$. + TODO + +\end{proof} + +\subsection{\verified{Lemma 4L(b)}}% +\hyperlabel{sub:lemma-4l-b} + +\begin{lemma}[4L(b)] + + No natural number is a member of itself. + +\end{lemma} + +\begin{proof} + + \lean{Init/Prelude}{Nat.lt\_irrefl} + + Define + \begin{equation} + \hyperlabel{sub:lemma-4l-b-eq1} + S = \{n \in \omega \mid n \not\in n\}. + \end{equation} + We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$. + Afterwards we show that (iii) our theorem holds. + + \paragraph{(i)}% + \hyperlabel{par:lemma-4l-b-i} + + By definition, $0 = \emptyset$. + It obviously holds that $\emptyset \not\in \emptyset$ since $\emptyset$, + by definition, has no members. + Thus $0 \in S$. + + \paragraph{(ii)}% + \hyperlabel{par:lemma-4l-b-ii} + + Suppose $n \in S$. + By \eqref{sub:lemma-4l-b-eq1}, $n \not\in n$. + By \nameref{sub:lemma-4l-a}, it follows $n^+ \not\in n^+$. + Thus $n^+ \in S$. + + \paragraph{(iii)}% + + By \nameref{par:lemma-4l-b-i} and \nameref{par:lemma-4l-b-ii}, $S$ is an + \nameref{ref:inductive-set}. + Hence \nameref{sub:theorem-4b} implies $S = \omega$. + Thus for all $n \in \omega$, $n \not\in n$. + +\end{proof} + +\subsection{\verified{\texorpdfstring{$0$}{Zero} is the Least Natural Number}}% +\hyperlabel{sub:zero-least-natural-number} + +\begin{lemma} + + For every natural number $n \neq 0$, $0 \in n$. + +\end{lemma} + +\begin{proof} + + \lean{Bookshelf/Enderton/Set/Chapter\_4} + {Enderton.Set.Chapter\_4.zero\_least\_nat} + + Let $$S = \{n \in \omega \mid n = 0 \lor 0 \in n\}.$$ + We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$. + Afterwards we show that (iii) our theorem holds. + + \paragraph{(i)}% + \hyperlabel{par:zero-least-natural-number-i} + + This trivially holds by definition of $S$. + + \paragraph{(ii)}% + \hyperlabel{par:zero-least-natural-number-ii} + + Suppose $n \in S$. + By definition of the \nameref{ref:successor} function, $n^+ = n \cup \{n\}$. + Thus $n \in n^+$. + By \nameref{sub:theorem-4f}, $n^+$ is a \nameref{ref:transitive-set}. + Since $0 \in n$ and $n \in n^+$, it follows $0 \in n^+$. + Thus $n^+ \in S$. + + \paragraph{(iii)}% + + By \nameref{par:zero-least-natural-number-i} and + \nameref{par:zero-least-natural-number-ii}, $S$ is an + \nameref{ref:inductive-set}. + Hence \nameref{sub:theorem-4b} implies $S = \omega$. + Thus for all $n \in \omega$, either $n = 0$ or $0 \in n$. + +\end{proof} + +\subsection{\verified{% Trichotomy Law for \texorpdfstring{$\omega$}{Natural Numbers}}}% -\hyperlabel{sub:trichotomy-law-natrual-numbers} +\hyperlabel{sub:trichotomy-law-natural-numbers} \begin{theorem} @@ -7216,25 +7343,111 @@ Show that $<_L$ is a linear ordering on $A \times B$. \begin{proof} - TODO + \lean{Bookshelf/Enderton/Set/Chapter\_4} + {Enderton.Set.Chapter\_4.trichotomy\_law\_for\_nat} + + Let $n \in \omega$ and define + \begin{equation} + \hyperlabel{sub:trichotomy-law-natural-numbers-eq1} + S = \{m \in \omega \mid m \in n \lor m = n \lor n \in m\}. + \end{equation} + We prove that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$. + Afterwards we show that (iii) our theorem holds. + + \paragraph{(i)}% + \hyperlabel{par:trichotomy-law-natural-numbers-i} + + If $n = 0$, then it trivially follows $0 \in S$. + Otherwise \nameref{sub:zero-least-natural-number} implies $0 \in n$. + Thus $0 \in S$. + + \paragraph{(ii)}% + \hyperlabel{par:trichotomy-law-natural-numbers-ii} + + Suppose $m \in S$. + By \eqref{sub:trichotomy-law-natural-numbers-eq1}, there are three cases to + consider: + + \subparagraph{Case 1}% + + Suppose $m \in n$. + By \nameref{sub:lemma-4l-a}, $m^+ \in n^+ = n \cup \{n\}$. + By definition of the \nameref{ref:successor}, $m^+ \in n$ or $m^+ = n$. + Either way, $m^+ \in S$. + + \subparagraph{Case 2}% + + Suppose $m = n$. + Since $m \in m^+$, it follows $n \in m^+$. + Thus $m^+ \in S$. + + \subparagraph{Case 3}% + + Suppose $n \in m$. + Then $n \in m \cup \{m\} = m^+$. + Thus $m^+ \in S$. + + \subparagraph{Conclusion}% + + Since the above three cases are exhaustive, it follows $m^+ \in S$. + + \paragraph{(iii)}% + + By \nameref{par:trichotomy-law-natural-numbers-i} and + \nameref{par:trichotomy-law-natural-numbers-ii}, $S$ is an + \nameref{ref:inductive-set}. + Hence \nameref{sub:theorem-4b} implies $S = \omega$. + Thus for all $m, n \in \omega$, $$m \in n \lor m = n \lor n \in m.$$ + We now prove that + $$\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}$$ + is \nameref{ref:irreflexive} and \nameref{ref:connected}. + Irreflexivity immediately follows from \nameref{sub:lemma-4l-b}. + Connectivity follows immediately from the fact $S = \omega$. + Furthermore, it is not possible both $m \in n$ and $n \in m$ since, by + \nameref{sub:theorem-4f}, $m$ and $n$ are \nameref{ref:transitive-set}s. + This would otherwise imply $m \in m$, an immediate contradiction to + irreflexivity. + Thus $\in_\omega$ is a \nameref{ref:trichotomous} relation. \end{proof} -\subsection{\sorry{% +\subsection{\verified{% Linear Ordering on \texorpdfstring{$\omega$}{Natural Numbers}}}% \hyperlabel{sub:linear-ordering-natural-numbers} \begin{theorem} Relation - $$\in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\}$$ + \begin{equation} + \hyperlabel{sub:linear-ordering-natural-numbers-eq1} + \in_\omega = \{\pair{m, n} \in \omega \times \omega \mid m \in n\} + \end{equation} is a linear ordering on $\omega$. \end{theorem} \begin{proof} - TODO + \lean{Bookshelf/Enderton/Set/Chapter\_4} + {Enderton.Set.Chapter\_4.linear\_ordering\_on\_nat} + + By definition, \eqref{sub:linear-ordering-natural-numbers-eq1} is a + \nameref{ref:linear-ordering} on $\omega$ if it is (i) transitive and + (ii) trichotomous. + + \paragraph{(i)}% + + Suppose $p, q, r \in \omega$ such that $p \in q$ and $q \in r$. + By \nameref{sub:theorem-4f}, $p$, $q$, and $r$ are + \nameref{ref:transitive-set}s. + By definition of a transitive set, it follows $p \in r$. + Hence \eqref{sub:linear-ordering-natural-numbers-eq1} is + \nameref{ref:transitive}. + + \paragraph{(ii)}% + + By \nameref{sub:trichotomy-law-natural-numbers}, + \eqref{sub:linear-ordering-natural-numbers-eq1} is trichotomous. \end{proof} @@ -7670,8 +7883,8 @@ Show that each natural number is either even or odd, but never both. Suppose $n$ is even and not odd. Then there exists some $m \in \omega$ such that $2 \cdot m = n$. - Since the successor operation is one-to-one, $(2 \cdot m)^+ = n^+$. - Thus $n^+$ is odd. + Therefore $(2 \cdot m)^+ = n^+$. + Hence $n^+$ is odd. For the sake of contradiction, suppose $n^+$ is even. Then there exists some $p$ such that $2 \cdot p = n^+$. @@ -7694,7 +7907,8 @@ Show that each natural number is either even or odd, but never both. & = q^+ + q^+ \\ & = (q^+ + q)^+. & \textref{sub:theorem-4i} \end{align*} - Since the successor operation is one-to-one, $n = q^+ + q$. + By \nameref{sub:theorem-4d}, the \nameref{ref:successor} operation is + one-to-one meaning $n = q^+ + q$. But then \begin{align*} n @@ -7715,13 +7929,13 @@ Show that each natural number is either even or odd, but never both. Suppose $n$ is odd and not even. Then there exists some $p \in \omega$ such that $(2 \cdot p)^+ = n$. - Since the successor operation is one-to-one, - $(2 \cdot p)^{++} = (2 \cdot p^+) = n^+$. - Thus $n^+$ is even. + Therefore $(2 \cdot p)^{++} = (2 \cdot p^+) = n^+$. + Hence $n^+$ is even. For the sake of contradiction, suppose $n^+$ is odd. Then there exists some $q$ such that $(2 \cdot q)^+ = n^+$. - Since the successor operation is one-to-one, it follows $2 \cdot q = n$. + By \nameref{sub:theorem-4d}, the \nameref{ref:successor} operation is + one-to-one meaning $2 \cdot q = n$. But this implies $n$ is even, a contradiction. Thus our original assumption is wrong. That is, $n^+$ is even but not odd. diff --git a/Bookshelf/Enderton/Set/Chapter_4.lean b/Bookshelf/Enderton/Set/Chapter_4.lean index ffedbf6..b6a6351 100644 --- a/Bookshelf/Enderton/Set/Chapter_4.lean +++ b/Bookshelf/Enderton/Set/Chapter_4.lean @@ -105,4 +105,41 @@ theorem exercise_4_14 (n : ℕ) have : even n := ⟨q, hq'⟩ exact absurd this h +/-- #### Lemma 10 + +For every natural number `n ≠ 0`, `0 ∈ n`. +-/ +theorem zero_least_nat (n : ℕ) + : 0 = n ∨ 0 < n := by + by_cases h : n = 0 + · left + rw [h] + · right + have ⟨m, hm⟩ := Nat.exists_eq_succ_of_ne_zero h + rw [hm] + exact Nat.succ_pos m + +/-- #### Trichotomy Law for ω + +For any natural numbers `m` and `n`, exactly one of the three conditions +``` +m ∈ n, m = n, n ∈ m +``` +holds. +-/ +theorem trichotomy_law_for_nat + : IsAsymm ℕ LT.lt ∧ IsTrichotomous ℕ LT.lt := + ⟨instIsAsymmLtToLT, instIsTrichotomousLtToLTToPreorderToPartialOrder⟩ + +/-- #### Linear Ordering on ω + +Relation +``` +∈_ω = {⟨m, n⟩ ∈ ω × ω | m ∈ n} +``` +is a linear ordering on `ω`. +-/ +theorem linear_ordering_on_nat + : IsStrictTotalOrder ℕ LT.lt := isStrictTotalOrder_of_linearOrder + end Enderton.Set.Chapter_4 \ No newline at end of file