Enderton. Ordered pairs.
parent
49bd4871fe
commit
7559664d56
|
@ -173,10 +173,8 @@ That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
|
|||
such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$
|
||||
Step functions are sometimes called \textbf{piecewise constant functions}.
|
||||
|
||||
\vspace{8pt}
|
||||
\noindent
|
||||
\textit{Note:} At each of the endpoints $x_{k-1}$ and $x_k$ the function must
|
||||
have some well-defined value, but this need not be the same as $s_k$.
|
||||
\note{At each of the endpoints $x_{k-1}$ and $x_k$ the function must
|
||||
have some well-defined value, but this need not be the same as $s_k$.}
|
||||
|
||||
\begin{definition}
|
||||
|
||||
|
|
|
@ -1,2 +1,3 @@
|
|||
import Bookshelf.Enderton.Set.Chapter_1
|
||||
import Bookshelf.Enderton.Set.Chapter_2
|
||||
import Bookshelf.Enderton.Set.Chapter_2
|
||||
import Bookshelf.Enderton.Set.Chapter_3
|
|
@ -2232,7 +2232,7 @@ If not, then under what conditions does equality hold?
|
|||
\subsection{\verified{Theorem 3A}}%
|
||||
\label{sub:theorem-3a}
|
||||
|
||||
\begin{theorem}
|
||||
\begin{theorem}[3A]
|
||||
|
||||
For any sets $x$, $y$, $u$, and $v$,
|
||||
\begin{equation}
|
||||
|
@ -2304,4 +2304,63 @@ If not, then under what conditions does equality hold?
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Lemma 3B}}%
|
||||
\label{sub:lemma-3b}
|
||||
|
||||
\begin{theorem}[3B]
|
||||
|
||||
If $x \in C$ and $y \in C$, then
|
||||
$\left< x, y \right> \in \powerset{\powerset{C}}$.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.theorem\_3b}
|
||||
|
||||
Let $C$ be an arbitrary set and $x, y \in C$.
|
||||
Then, by definition of the \nameref{ref:power-set},
|
||||
$\{x\}$ and $\{x, y\}$ are members of $\powerset{C}$.
|
||||
Likewise, $\{\{x\}, \{x, y\}\}$ is a member of $\powerset{\powerset{C}}$.
|
||||
By definition of an \nameref{ref:ordered-pair},
|
||||
$\left< x, y \right> = \{\{x\}, \{x, y\}\}$.
|
||||
This concludes our proof.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Cartesian Product}}%
|
||||
\label{sub:corollary-3c}
|
||||
\label{sub:cartesian-product}
|
||||
|
||||
\begin{theorem}[3C]
|
||||
|
||||
For any sets $A$ and $B$, there is a set whose members are exactly the
|
||||
pairs $\left< x, y \right>$ with $x \in A$ and $y \in B$.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean*{Mathlib/SetTheory/ZFC/Basic}{Set.prod}
|
||||
|
||||
\note{The above Lean proof is a definition (i.e. an axiom). It does not prove
|
||||
such a set's existence from first principles.}
|
||||
|
||||
Define $C = A \cup B$.
|
||||
Then for all $x \in A$ and for all $y \in B$, $x$ and $y$ are both in $C$.
|
||||
By \nameref{sub:lemma-3b}, it follows that
|
||||
$\left< x, y \right> \in \powerset{\powerset{C}}$.
|
||||
The \nameref{ref:power-set-axiom} indicates $\powerset{\powerset{C}}$ is
|
||||
indeed a set.
|
||||
Therefore the \nameref{ref:subset-axioms} are applicable.
|
||||
This implies the existence of a set $D$ such that
|
||||
$$\forall z, (z \in D \iff z \in \powerset{\powerset{C}} \land
|
||||
(\exists x, \exists y, x \in A \land y \in B \land
|
||||
z = \left< x, y \right>)).$$
|
||||
By construction $D$ is the set whose members are exactly the pairs
|
||||
$\left< x, y \right>$ with $x \in A$ and $y \in B$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -1,4 +1,7 @@
|
|||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.SetTheory.ZFC.Basic
|
||||
|
||||
import Common.Set.OrderedPair
|
||||
|
||||
/-! # Enderton.Chapter_3
|
||||
|
||||
|
@ -7,4 +10,13 @@ Relations and Functions
|
|||
|
||||
namespace Enderton.Set.Chapter_3
|
||||
|
||||
/--
|
||||
If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`.
|
||||
-/
|
||||
theorem theorem_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
|
||||
: Set.OrderedPair x y ∈ 𝒫 𝒫 C := by
|
||||
have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx
|
||||
have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
|
||||
exact Set.mem_mem_imp_pair_subset hxs hxys
|
||||
|
||||
end Enderton.Set.Chapter_3
|
Loading…
Reference in New Issue