Enderton. Ordered pairs.

finite-set-exercises
Joshua Potter 2023-06-08 17:57:02 -06:00
parent 49bd4871fe
commit 7559664d56
4 changed files with 76 additions and 6 deletions

View File

@ -173,10 +173,8 @@ That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$
such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$
Step functions are sometimes called \textbf{piecewise constant functions}.
\vspace{8pt}
\noindent
\textit{Note:} At each of the endpoints $x_{k-1}$ and $x_k$ the function must
have some well-defined value, but this need not be the same as $s_k$.
\note{At each of the endpoints $x_{k-1}$ and $x_k$ the function must
have some well-defined value, but this need not be the same as $s_k$.}
\begin{definition}

View File

@ -1,2 +1,3 @@
import Bookshelf.Enderton.Set.Chapter_1
import Bookshelf.Enderton.Set.Chapter_2
import Bookshelf.Enderton.Set.Chapter_2
import Bookshelf.Enderton.Set.Chapter_3

View File

@ -2232,7 +2232,7 @@ If not, then under what conditions does equality hold?
\subsection{\verified{Theorem 3A}}%
\label{sub:theorem-3a}
\begin{theorem}
\begin{theorem}[3A]
For any sets $x$, $y$, $u$, and $v$,
\begin{equation}
@ -2304,4 +2304,63 @@ If not, then under what conditions does equality hold?
\end{proof}
\subsection{\verified{Lemma 3B}}%
\label{sub:lemma-3b}
\begin{theorem}[3B]
If $x \in C$ and $y \in C$, then
$\left< x, y \right> \in \powerset{\powerset{C}}$.
\end{theorem}
\begin{proof}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.theorem\_3b}
Let $C$ be an arbitrary set and $x, y \in C$.
Then, by definition of the \nameref{ref:power-set},
$\{x\}$ and $\{x, y\}$ are members of $\powerset{C}$.
Likewise, $\{\{x\}, \{x, y\}\}$ is a member of $\powerset{\powerset{C}}$.
By definition of an \nameref{ref:ordered-pair},
$\left< x, y \right> = \{\{x\}, \{x, y\}\}$.
This concludes our proof.
\end{proof}
\subsection{\verified{Cartesian Product}}%
\label{sub:corollary-3c}
\label{sub:cartesian-product}
\begin{theorem}[3C]
For any sets $A$ and $B$, there is a set whose members are exactly the
pairs $\left< x, y \right>$ with $x \in A$ and $y \in B$.
\end{theorem}
\begin{proof}
\lean*{Mathlib/SetTheory/ZFC/Basic}{Set.prod}
\note{The above Lean proof is a definition (i.e. an axiom). It does not prove
such a set's existence from first principles.}
Define $C = A \cup B$.
Then for all $x \in A$ and for all $y \in B$, $x$ and $y$ are both in $C$.
By \nameref{sub:lemma-3b}, it follows that
$\left< x, y \right> \in \powerset{\powerset{C}}$.
The \nameref{ref:power-set-axiom} indicates $\powerset{\powerset{C}}$ is
indeed a set.
Therefore the \nameref{ref:subset-axioms} are applicable.
This implies the existence of a set $D$ such that
$$\forall z, (z \in D \iff z \in \powerset{\powerset{C}} \land
(\exists x, \exists y, x \in A \land y \in B \land
z = \left< x, y \right>)).$$
By construction $D$ is the set whose members are exactly the pairs
$\left< x, y \right>$ with $x \in A$ and $y \in B$.
\end{proof}
\end{document}

View File

@ -1,4 +1,7 @@
import Mathlib.Data.Set.Basic
import Mathlib.SetTheory.ZFC.Basic
import Common.Set.OrderedPair
/-! # Enderton.Chapter_3
@ -7,4 +10,13 @@ Relations and Functions
namespace Enderton.Set.Chapter_3
/--
If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`.
-/
theorem theorem_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
: Set.OrderedPair x y ∈ 𝒫 𝒫 C := by
have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx
have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
exact Set.mem_mem_imp_pair_subset hxs hxys
end Enderton.Set.Chapter_3