From 7559664d56f07bbd1ac5023e6fc1476f62622993 Mon Sep 17 00:00:00 2001 From: Joshua Potter Date: Thu, 8 Jun 2023 17:57:02 -0600 Subject: [PATCH] Enderton. Ordered pairs. --- Bookshelf/Apostol.tex | 6 +-- Bookshelf/Enderton/Set.lean | 3 +- Bookshelf/Enderton/Set.tex | 61 ++++++++++++++++++++++++++- Bookshelf/Enderton/Set/Chapter_3.lean | 12 ++++++ 4 files changed, 76 insertions(+), 6 deletions(-) diff --git a/Bookshelf/Apostol.tex b/Bookshelf/Apostol.tex index 95d1847..e04e2cc 100644 --- a/Bookshelf/Apostol.tex +++ b/Bookshelf/Apostol.tex @@ -173,10 +173,8 @@ That is to say, for each $k = 1, 2, \ldots, n$, there is a real number $s_k$ such that $$s(x) = s_k \quad\text{if}\quad x_{k-1} < x < x_k.$$ Step functions are sometimes called \textbf{piecewise constant functions}. -\vspace{8pt} -\noindent -\textit{Note:} At each of the endpoints $x_{k-1}$ and $x_k$ the function must - have some well-defined value, but this need not be the same as $s_k$. +\note{At each of the endpoints $x_{k-1}$ and $x_k$ the function must + have some well-defined value, but this need not be the same as $s_k$.} \begin{definition} diff --git a/Bookshelf/Enderton/Set.lean b/Bookshelf/Enderton/Set.lean index 52a12d4..231a644 100644 --- a/Bookshelf/Enderton/Set.lean +++ b/Bookshelf/Enderton/Set.lean @@ -1,2 +1,3 @@ import Bookshelf.Enderton.Set.Chapter_1 -import Bookshelf.Enderton.Set.Chapter_2 \ No newline at end of file +import Bookshelf.Enderton.Set.Chapter_2 +import Bookshelf.Enderton.Set.Chapter_3 \ No newline at end of file diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index d8875bc..c120ae0 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -2232,7 +2232,7 @@ If not, then under what conditions does equality hold? \subsection{\verified{Theorem 3A}}% \label{sub:theorem-3a} -\begin{theorem} +\begin{theorem}[3A] For any sets $x$, $y$, $u$, and $v$, \begin{equation} @@ -2304,4 +2304,63 @@ If not, then under what conditions does equality hold? \end{proof} +\subsection{\verified{Lemma 3B}}% +\label{sub:lemma-3b} + +\begin{theorem}[3B] + + If $x \in C$ and $y \in C$, then + $\left< x, y \right> \in \powerset{\powerset{C}}$. + +\end{theorem} + +\begin{proof} + + \lean{Bookshelf/Enderton/Set/Chapter\_3} + {Enderton.Set.Chapter\_3.theorem\_3b} + + Let $C$ be an arbitrary set and $x, y \in C$. + Then, by definition of the \nameref{ref:power-set}, + $\{x\}$ and $\{x, y\}$ are members of $\powerset{C}$. + Likewise, $\{\{x\}, \{x, y\}\}$ is a member of $\powerset{\powerset{C}}$. + By definition of an \nameref{ref:ordered-pair}, + $\left< x, y \right> = \{\{x\}, \{x, y\}\}$. + This concludes our proof. + +\end{proof} + +\subsection{\verified{Cartesian Product}}% +\label{sub:corollary-3c} +\label{sub:cartesian-product} + +\begin{theorem}[3C] + + For any sets $A$ and $B$, there is a set whose members are exactly the + pairs $\left< x, y \right>$ with $x \in A$ and $y \in B$. + +\end{theorem} + +\begin{proof} + + \lean*{Mathlib/SetTheory/ZFC/Basic}{Set.prod} + + \note{The above Lean proof is a definition (i.e. an axiom). It does not prove + such a set's existence from first principles.} + + Define $C = A \cup B$. + Then for all $x \in A$ and for all $y \in B$, $x$ and $y$ are both in $C$. + By \nameref{sub:lemma-3b}, it follows that + $\left< x, y \right> \in \powerset{\powerset{C}}$. + The \nameref{ref:power-set-axiom} indicates $\powerset{\powerset{C}}$ is + indeed a set. + Therefore the \nameref{ref:subset-axioms} are applicable. + This implies the existence of a set $D$ such that + $$\forall z, (z \in D \iff z \in \powerset{\powerset{C}} \land + (\exists x, \exists y, x \in A \land y \in B \land + z = \left< x, y \right>)).$$ + By construction $D$ is the set whose members are exactly the pairs + $\left< x, y \right>$ with $x \in A$ and $y \in B$. + +\end{proof} + \end{document} diff --git a/Bookshelf/Enderton/Set/Chapter_3.lean b/Bookshelf/Enderton/Set/Chapter_3.lean index 1470377..809dfce 100644 --- a/Bookshelf/Enderton/Set/Chapter_3.lean +++ b/Bookshelf/Enderton/Set/Chapter_3.lean @@ -1,4 +1,7 @@ import Mathlib.Data.Set.Basic +import Mathlib.SetTheory.ZFC.Basic + +import Common.Set.OrderedPair /-! # Enderton.Chapter_3 @@ -7,4 +10,13 @@ Relations and Functions namespace Enderton.Set.Chapter_3 +/-- +If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`. +-/ +theorem theorem_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C) + : Set.OrderedPair x y ∈ 𝒫 𝒫 C := by + have hxs : {x} ⊆ C := Set.singleton_subset_iff.mpr hx + have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy + exact Set.mem_mem_imp_pair_subset hxs hxys + end Enderton.Set.Chapter_3 \ No newline at end of file