Enderton. Finish exercises 5 in LaTeX.

finite-set-exercises
Joshua Potter 2023-06-10 05:51:42 -06:00
parent ad3e31764b
commit 64d8324657
4 changed files with 181 additions and 6 deletions

View File

@ -2473,4 +2473,141 @@ Show that if $A \times B = A \times C$ and $A \neq \emptyset$, then $B = C$.
\end{proof}
\subsection{\verified{Exercise 5.3}}%
\label{sub:exercise-5.3}
Show that $A \times \bigcup \mathscr{B} =
\bigcup\;\{ A \times X \mid X \in \mathscr{B} \}$.
\begin{proof}
\lean{Bookshelf/Enderton/Set/Chapter\_3}
{Enderton.Set.Chapter\_3.exercise\_5\_3}
Let $A$ and $\mathscr{B}$ be arbitrary sets.
By definition of the \nameref{sub:cartesian-product} and the union of sets,
\begin{align*}
A \times \bigcup\mathscr{B}
& = \{ \left< x, y \right> \mid
x \in A \land y \in \bigcup\mathscr{B} \} \\
& = \{ \left< x, y \right> \mid
x \in A \land (\exists b \in \mathscr{B}), y \in b \} \\
& = \{ \left< x, y \right> \mid
(\exists b \in \mathscr{B}), x \in A \land y \in b \} \\
& = \bigcup\; \{ A \times X \mid X \in \mathscr{B} \}.
\end{align*}
\end{proof}
\subsection{\partial{Exercise 5.4}}%
\label{sub:exercise-5.4}
Show that there is no set to which every ordered pair belongs.
\begin{proof}
For the sake of contradiction, suppose there exists a set $A$ to which every
ordered pair belongs.
That is, for all sets $x$ and $y$, $\left< x, y \right> = \{\{x\}, \{x, y\}\}$
is a member of $A$.
By the \nameref{ref:union-axiom}, it follows that $\bigcup\bigcup A$ is the
set to which every set belongs.
But \nameref{sub:theorem-2a} shows this is impossible.
Thus our original assumption was wrong; there exists no set to which every
ordered pair belongs.
\end{proof}
\subsection{\partial{Exercise 5.5a}}%
\label{sub:exercise-5.5a}
Assume that $A$ and $B$ are given sets, and show that there exists a set $C$
such that for any $y$,
$$y \in C \iff y = \{x\} \times B \text{ for some } x \text{ in } A.$$
In other words, show that $\{\{x\} \times B \mid x \in A\}$ is a set.
\begin{proof}
Let $A$ and $B$ be arbitrary sets.
Also let $x \in A$.
By definition of the \nameref{sub:cartesian-product},
\begin{equation}
\label{sub:exercise-5.5a-eq1}
\{x\} \times B = \{ \left< x, b \right> \mid b \in B \}.
\end{equation}
If $B = \emptyset$ then $\{x\} \times B$ trivially evaluates to the empty set,
which is a set by virtue of the \nameref{ref:empty-set-axiom}.
Therefore we continue under the assumption $B \neq \emptyset$.
We prove that (i)
$\{x\} \times B \subseteq \powerset{\powerset{(\{x\} \cup B)}}$ and then
(ii) that $\{x\} \times B$ is a set.
\paragraph{(i)}%
\label{par:exercise-5.5a-i}
Let $t \in \{x\} \times B$.
By \eqref{sub:exercise-5.5a-eq1} and definition of an
\nameref{ref:ordered-pair}, there exists a $b \in B$ such that
$$t = \left< x, b \right> = \{\{x\}, \{x, b\}\}.$$
It trivially holds that
$$\{x\} \subseteq \{x\} \cup B \quad\text{and}\quad
\{x, b\} \subseteq \{x\} \cup B.$$
Therefore, by definition of the \nameref{ref:power-set},
$$\{x\} \in \powerset{(\{x\} \cup B)} \quad\text{and}\quad
\{x, b\} \in \powerset{(\{x\} \cup B)}.$$
But then $\{\{x\}, \{x, b\}\} \subseteq \powerset{(\{x\} \cup B)}$.
Another application of the definition of the \nameref{ref:power-set} implies
that $$\{\{x\}, \{x, b\}\} \in \powerset{\powerset{(\{x\} \cup B)}}.$$
Since this holds for all sets $t$,
$\{x\} \times B \subseteq \powerset{\powerset{(\{x\} \cup B)}}$.
\paragraph{(ii)}%
\label{par:exercise-5.5a-ii}
By the \nameref{ref:subset-axioms}, there exists a set $C$ such that for any
set $y$, $$y \in C \iff
y \in \powerset{\powerset{(\{x\} \cup B)}} \land
(\exists b \in B, y = \left< x, b \right>).$$
The above equation and \eqref{sub:exercise-5.5a-eq1} implies $C$ contains
only ordered pairs of the desired form.
By \nameref{par:exercise-5.5a-i}, $C$ contains them all.
\paragraph{Conclusion}%
Since $x$ was an arbitrarily chosen member of $A$,
\nameref{par:exercise-5.5a-ii} immediately implies that
$\{\{x\} \times B \mid x \in A\}$ is indeed a set.
\end{proof}
\subsection{\partial{Exercise 5.5b}}%
\label{sub:exercise-5.5b}
With $A$, $B$, and $C$ as above, show that $A \times B = \bigcup C$.
\begin{proof}
Let $A$ and $B$ be arbitrary sets.
We want to show that
\begin{equation}
\label{sub:exercise-5.5b-eq1}
A \times B = \bigcup\; \{\{x\} \times B \mid x \in A\}.
\end{equation}
Note that \nameref{sub:cartesian-product} and \nameref{sub:exercise-5.5a}
prove the left- and right-hand sides of \eqref{sub:exercise-5.5b-eq1} are
sets respectively.
Then
\begin{align*}
A \times B
& = \{ y \mid \exists x \in A, \exists b \in B, y = \left< x, b \right> \} \\
& = \{ y \mid \exists b \in B, \exists x \in A, y = \left< x, b \right> \} \\
& = \{ y \mid \exists b \in B, y \in \{ \left< x, b \right> \mid x \in A \} \} \\
& = \{ y \mid y \in \{ \left< x, b \right> \mid x \in A \land b \in B \} \} \\
& = \{ y \mid \exists z \in \{\{x\} \times B \mid x \in A \}, y \in z \} \\
& = \bigcup \{\{x\} \times B \mid x \in A \}.
\end{align*}
\end{proof}
\end{document}

View File

@ -46,7 +46,7 @@ theorem exercise_5_1 {x y z u v w : }
Show that `A × (B C) = (A × B) (A × C)`.
-/
theorem exercise_5_2a {A B C : Set α}
theorem exercise_5_2a {A : Set α} {B C : Set β}
: Set.prod A (B C) = (Set.prod A B) (Set.prod A C) := by
calc Set.prod A (B C)
_ = { p | p.1 ∈ A ∧ p.2 ∈ B C } := rfl
@ -62,7 +62,7 @@ theorem exercise_5_2a {A B C : Set α}
Show that if `A × B = A × C` and `A ≠ ∅`, then `B = C`.
-/
theorem exercise_5_2b {A B C : Set α}
theorem exercise_5_2b {A : Set α} {B C : Set β}
(h : Set.prod A B = Set.prod A C) (hA : Set.Nonempty A)
: B = C := by
by_cases hB : Set.Nonempty B
@ -87,4 +87,42 @@ theorem exercise_5_2b {A B C : Set α}
have ⟨c, hc⟩ := Set.nonempty_iff_ne_empty.mpr (Ne.symm nC)
exact (h (a, c)).mpr ⟨ha, hc⟩
/-- ### Exercise 5.3
Show that `A × 𝓑 = {A × X | X ∈ 𝓑}`.
-/
theorem exercise_5_3 {A : Set (Set α)} {𝓑 : Set (Set β)}
: Set.prod A (⋃₀ 𝓑) = ⋃₀ {Set.prod A X | X ∈ 𝓑} := by
calc Set.prod A (⋃₀ 𝓑)
_ = { p | p.1 ∈ A ∧ p.2 ∈ ⋃₀ 𝓑} := rfl
_ = { p | p.1 ∈ A ∧ ∃ b ∈ 𝓑, p.2 ∈ b } := rfl
_ = { p | ∃ b ∈ 𝓑, p.1 ∈ A ∧ p.2 ∈ b } := by
ext x
rw [Set.mem_setOf_eq]
apply Iff.intro
· intro ⟨h₁, ⟨b, h₂⟩⟩
exact ⟨b, ⟨h₂.left, ⟨h₁, h₂.right⟩⟩⟩
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
exact ⟨h₂, ⟨b, ⟨h₁, h₃⟩⟩⟩
_ = ⋃₀ { Set.prod A p | p ∈ 𝓑 } := by
ext x
rw [Set.mem_setOf_eq]
unfold Set.sUnion sSup Set.instSupSetSet
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and]
apply Iff.intro
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
/-- ### Exercise 5.5b
With `A`, `B`, and `C` as above, show that `A × B = C`.
-/
theorem exercise_5_5b {A : Set α} {B : Set β}
: Set.prod A B = ⋃₀ {Set.prod {x} B | x ∈ A} := by
-- TODO: `Set.OrderedPair` should allow two different types.
-- TODO: We can cast `(α × β)` up into type `Set (Set (α ⊕ β))`.
sorry
end Enderton.Set.Chapter_3

View File

@ -135,7 +135,7 @@ theorem self_mem_powerset_self {A : Set α}
For any `Set` `A`, `∅ × A = ∅`.
-/
theorem prod_left_emptyset_eq_emptyset {A : Set α}
: Set.prod (∅ : Set α) A = ∅ := by
: Set.prod (∅ : Set β) A = ∅ := by
unfold prod
simp only [mem_empty_iff_false, false_and, setOf_false]
@ -143,7 +143,7 @@ theorem prod_left_emptyset_eq_emptyset {A : Set α}
For any `Set` `A`, `A × ∅ = ∅`.
-/
theorem prod_right_emptyset_eq_emptyset {A : Set α}
: Set.prod A (∅ : Set α) = ∅ := by
: Set.prod A (∅ : Set β) = ∅ := by
unfold prod
simp only [mem_empty_iff_false, and_false, setOf_false]
@ -151,7 +151,7 @@ theorem prod_right_emptyset_eq_emptyset {A : Set α}
For any `Set`s `A` and `B`, if both `A` and `B` are nonempty, then `A × B` is
also nonempty.
-/
theorem prod_nonempty_nonempty_imp_nonempty_prod {A B : Set α}
theorem prod_nonempty_nonempty_imp_nonempty_prod {A : Set α} {B : Set β}
: A ≠ ∅ ∧ B ≠ ∅ ↔ Set.prod A B ≠ ∅ := by
apply Iff.intro
· intro nAB h

View File

@ -12,7 +12,7 @@ def OrderedPair (x y : α) : Set (Set α) := {{x}, {x, y}}
namespace OrderedPair
theorem ext_iff {x y u v : α}
theorem ext_iff
: (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by
unfold OrderedPair
apply Iff.intro