Enderton. Exercise 5.(1|2a|2b).
parent
cdacf7b0ac
commit
ad3e31764b
|
@ -2363,4 +2363,114 @@ If not, then under what conditions does equality hold?
|
|||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 5}%
|
||||
\label{sec:exercises-5}
|
||||
|
||||
\subsection{\verified{Exercise 5.1}}%
|
||||
\label{sub:exercise-5.1}
|
||||
|
||||
Suppose that we attempted to generalize the Kuratowski definitions of ordered
|
||||
pairs to ordered triples by defining
|
||||
$$\left< x, y, z \right>^* = \{\{x\}, \{x, y\}, \{x, y, z\}\}.$$
|
||||
Show that this definition is unsuccessful by giving examples of objects
|
||||
$u$, $v$, $w$, $x$, $y$, $z$ with
|
||||
$\left< x, y, z \right>^* = \left< u, v, w \right>^*$ but with either
|
||||
$y \neq v$ or $z \neq w$ (or both).
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.exercise\_5\_1}
|
||||
|
||||
Let $x = 1$, $y = 1$, and $z = 2$.
|
||||
Let $u = 1$, $v = 2$, and $w = 2$.
|
||||
Then
|
||||
\begin{align*}
|
||||
\left< x, y, z \right>^*
|
||||
& = \{\{x\}, \{x, y\}, \{x, y, z\}\} \\
|
||||
& = \{\{1\}, \{1, 1\}, \{1, 1, 2\}\} \\
|
||||
& = \{\{1\}, \{1, 2\}\}.
|
||||
\end{align*}
|
||||
Likewise
|
||||
\begin{align*}
|
||||
\left< u, v, w \right>^*
|
||||
& = \{\{u\}, \{u, v\}, \{u, v, w\}\} \\
|
||||
& = \{\{1\}, \{1, 2\}, \{1, 2, 2\}\} \\
|
||||
& = \{\{1\}, \{1, 2\}\}.
|
||||
\end{align*}
|
||||
Thus $\left< x, y, z \right>^* = \left< u, v, w \right>^*$ but $y \neq v$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Exercise 5.2a}}%
|
||||
\label{sub:exercise-5.2a}
|
||||
|
||||
Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.exercise\_5\_2a}
|
||||
|
||||
Let $A$, $B$, and $C$ be arbitrary sets.
|
||||
Then by definition of the \nameref{sub:cartesian-product} and union of sets,
|
||||
\begin{align*}
|
||||
A \times (B \cup C)
|
||||
& = \{ \left< x, y \right> \mid x \in A \land y \in (B \cup C) \} \\
|
||||
& = \{ \left< x, y \right> \mid
|
||||
x \in A \land (y \in B \lor y \in C) \} \\
|
||||
& = \{ \left< x, y \right> \mid
|
||||
(x \in A \land y \in B) \lor (x \in A \land y \in C) \} \\
|
||||
& = \{ \left< x, y \right> \mid (x \in A \land y \in B) \} \cup
|
||||
\{ \left< x, y \right> \mid (x \in A \land y \in C) \} \\
|
||||
& = (A \times B) \cup (A \times C).
|
||||
\end{align*}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Exercise 5.2b}}%
|
||||
\label{sub:exercise-5.2b}
|
||||
|
||||
Show that if $A \times B = A \times C$ and $A \neq \emptyset$, then $B = C$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.exercise\_5\_2b}
|
||||
|
||||
Let $A$, $B$, and $C$ be arbitrary sets such that $A \neq \emptyset$.
|
||||
By definition of the \nameref{sub:cartesian-product},
|
||||
\begin{align}
|
||||
A \times B & = \{ \left< x, y \right> \mid x \in A \land y \in B \}
|
||||
& \label{sub:exercise-5.2b-eq1} \\
|
||||
A \times C & = \{ \left< x, y \right> \mid x \in A \land y \in C \}.
|
||||
& \label{sub:exercise-5.2b-eq2}
|
||||
\end{align}
|
||||
There are two cases to consider:
|
||||
|
||||
\paragraph{Case 1}%
|
||||
|
||||
Suppose $B \neq \emptyset$.
|
||||
Then $A \times B \neq \emptyset$ and $A \times C \neq \emptyset$.
|
||||
Let $\left< x, y \right> \in A \times B$.
|
||||
By \eqref{sub:exercise-5.2b-eq1}, $x \in A$ and $y \in B$.
|
||||
By the \nameref{ref:extensionality-axiom},
|
||||
$$\left< x, y \right> \in A \times B \iff \left< x, y \right> \in A \times C.$$
|
||||
Therefore $\left< x, y \right> \in A \times C$.
|
||||
By \eqref{sub:exercise-5.2b-eq2}, $x \in A$ and $y \in C$.
|
||||
Since membership of $y$ in $B$ and in $C$ holds biconditionally, the
|
||||
\nameref{ref:extensionality-axiom} indicates $B = C$.
|
||||
|
||||
\paragraph{Case 2}%
|
||||
|
||||
Suppose $B = \emptyset$.
|
||||
Then there is no $\left< x, y \right>$ such that $x \in A$ and $y \in B$.
|
||||
Thus $A \times B = \emptyset$ and $A \times C = \emptyset$.
|
||||
But then there cannot exist an $\left< x, y \right>$ such that $x \in A$
|
||||
and $y \in C$ either.
|
||||
Since $A \neq \emptyset$, it must be the case that $C = \emptyset$.
|
||||
Thus $B = C$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.SetTheory.ZFC.Basic
|
||||
|
||||
import Common.Set.Basic
|
||||
import Common.Set.OrderedPair
|
||||
|
||||
/-! # Enderton.Chapter_3
|
||||
|
@ -19,4 +20,71 @@ theorem theorem_3b {C : Set α} (hx : x ∈ C) (hy : y ∈ C)
|
|||
have hxys : {x, y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
|
||||
exact Set.mem_mem_imp_pair_subset hxs hxys
|
||||
|
||||
/-- ### Exercise 5.1
|
||||
|
||||
Suppose that we attempted to generalize the Kuratowski definitions of ordered
|
||||
pairs to ordered triples by defining
|
||||
```
|
||||
⟨x, y, z⟩* = {{x}, {x, y}, {x, y, z}}.
|
||||
```
|
||||
Show that this definition is unsuccessful by giving examples of objects `u`,
|
||||
`v`, `w`, `x`, `y`, `z` with `⟨x, y, z⟩* = ⟨u, v, w⟩*` but with either `y ≠ v`
|
||||
or `z ≠ w` (or both).
|
||||
-/
|
||||
theorem exercise_5_1 {x y z u v w : ℕ}
|
||||
(hx : x = 1) (hy : y = 1) (hz : z = 2)
|
||||
(hu : u = 1) (hv : v = 2) (hw : w = 2)
|
||||
: ({{x}, {x, y}, {x, y, z}} : Set (Set ℕ)) = {{u}, {u, v}, {u, v, w}}
|
||||
∧ y ≠ v := by
|
||||
apply And.intro
|
||||
· rw [hx, hy, hz, hu, hv, hw]
|
||||
simp
|
||||
· rw [hy, hv]
|
||||
simp only
|
||||
|
||||
/-- ### Exercise 5.2a
|
||||
|
||||
Show that `A × (B ∪ C) = (A × B) ∪ (A × C)`.
|
||||
-/
|
||||
theorem exercise_5_2a {A B C : Set α}
|
||||
: Set.prod A (B ∪ C) = (Set.prod A B) ∪ (Set.prod A C) := by
|
||||
calc Set.prod A (B ∪ C)
|
||||
_ = { p | p.1 ∈ A ∧ p.2 ∈ B ∪ C } := rfl
|
||||
_ = { p | p.1 ∈ A ∧ (p.2 ∈ B ∨ p.2 ∈ C) } := rfl
|
||||
_ = { p | (p.1 ∈ A ∧ p.2 ∈ B) ∨ (p.1 ∈ A ∧ p.2 ∈ C) } := by
|
||||
ext x
|
||||
rw [Set.mem_setOf_eq]
|
||||
conv => lhs; rw [and_or_left]
|
||||
_ = { p | p ∈ Set.prod A B ∨ (p ∈ Set.prod A C) } := rfl
|
||||
_ = (Set.prod A B) ∪ (Set.prod A C) := rfl
|
||||
|
||||
/-- ### Exercise 5.2b
|
||||
|
||||
Show that if `A × B = A × C` and `A ≠ ∅`, then `B = C`.
|
||||
-/
|
||||
theorem exercise_5_2b {A B C : Set α}
|
||||
(h : Set.prod A B = Set.prod A C) (hA : Set.Nonempty A)
|
||||
: B = C := by
|
||||
by_cases hB : Set.Nonempty B
|
||||
· suffices B ⊆ C ∧ C ⊆ B from Set.Subset.antisymm_iff.mpr this
|
||||
have ⟨a, ha⟩ := hA
|
||||
apply And.intro
|
||||
· show ∀ t, t ∈ B → t ∈ C
|
||||
intro t ht
|
||||
have : (a, t) ∈ Set.prod A B := ⟨ha, ht⟩
|
||||
rw [h] at this
|
||||
exact this.right
|
||||
· show ∀ t, t ∈ C → t ∈ B
|
||||
intro t ht
|
||||
have : (a, t) ∈ Set.prod A C := ⟨ha, ht⟩
|
||||
rw [← h] at this
|
||||
exact this.right
|
||||
· have nB : B = ∅ := Set.not_nonempty_iff_eq_empty.mp hB
|
||||
rw [nB, Set.prod_right_emptyset_eq_emptyset, Set.ext_iff] at h
|
||||
rw [nB]
|
||||
by_contra nC
|
||||
have ⟨a, ha⟩ := hA
|
||||
have ⟨c, hc⟩ := Set.nonempty_iff_ne_empty.mpr (Ne.symm nC)
|
||||
exact (h (a, c)).mpr ⟨ha, hc⟩
|
||||
|
||||
end Enderton.Set.Chapter_3
|
|
@ -1,4 +1,5 @@
|
|||
import Mathlib.Data.Set.Basic
|
||||
import Mathlib.SetTheory.ZFC.Basic
|
||||
|
||||
import Common.Logic.Basic
|
||||
|
||||
|
@ -128,6 +129,42 @@ Every `Set` is a member of its own powerset.
|
|||
theorem self_mem_powerset_self {A : Set α}
|
||||
: A ∈ 𝒫 A := subset_self A
|
||||
|
||||
/-! ## Cartesian Product -/
|
||||
|
||||
/--
|
||||
For any `Set` `A`, `∅ × A = ∅`.
|
||||
-/
|
||||
theorem prod_left_emptyset_eq_emptyset {A : Set α}
|
||||
: Set.prod (∅ : Set α) A = ∅ := by
|
||||
unfold prod
|
||||
simp only [mem_empty_iff_false, false_and, setOf_false]
|
||||
|
||||
/--
|
||||
For any `Set` `A`, `A × ∅ = ∅`.
|
||||
-/
|
||||
theorem prod_right_emptyset_eq_emptyset {A : Set α}
|
||||
: Set.prod A (∅ : Set α) = ∅ := by
|
||||
unfold prod
|
||||
simp only [mem_empty_iff_false, and_false, setOf_false]
|
||||
|
||||
/--
|
||||
For any `Set`s `A` and `B`, if both `A` and `B` are nonempty, then `A × B` is
|
||||
also nonempty.
|
||||
-/
|
||||
theorem prod_nonempty_nonempty_imp_nonempty_prod {A B : Set α}
|
||||
: A ≠ ∅ ∧ B ≠ ∅ ↔ Set.prod A B ≠ ∅ := by
|
||||
apply Iff.intro
|
||||
· intro nAB h
|
||||
have ⟨a, ha⟩ := nonempty_iff_ne_empty.mpr nAB.left
|
||||
have ⟨b, hb⟩ := nonempty_iff_ne_empty.mpr nAB.right
|
||||
rw [Set.ext_iff] at h
|
||||
exact (h (a, b)).mp ⟨ha, hb⟩
|
||||
· intro h
|
||||
rw [← nonempty_iff_ne_empty] at h
|
||||
have ⟨(a, b), ⟨ha, hb⟩⟩ := h
|
||||
rw [← nonempty_iff_ne_empty, ← nonempty_iff_ne_empty]
|
||||
exact ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
|
||||
|
||||
/-! ## Symmetric Difference -/
|
||||
|
||||
/--
|
||||
|
|
Loading…
Reference in New Issue