Enderton. Finish exercises 5 in LaTeX.
parent
ad3e31764b
commit
64d8324657
|
@ -2473,4 +2473,141 @@ Show that if $A \times B = A \times C$ and $A \neq \emptyset$, then $B = C$.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\verified{Exercise 5.3}}%
|
||||||
|
\label{sub:exercise-5.3}
|
||||||
|
|
||||||
|
Show that $A \times \bigcup \mathscr{B} =
|
||||||
|
\bigcup\;\{ A \times X \mid X \in \mathscr{B} \}$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||||
|
{Enderton.Set.Chapter\_3.exercise\_5\_3}
|
||||||
|
|
||||||
|
Let $A$ and $\mathscr{B}$ be arbitrary sets.
|
||||||
|
By definition of the \nameref{sub:cartesian-product} and the union of sets,
|
||||||
|
\begin{align*}
|
||||||
|
A \times \bigcup\mathscr{B}
|
||||||
|
& = \{ \left< x, y \right> \mid
|
||||||
|
x \in A \land y \in \bigcup\mathscr{B} \} \\
|
||||||
|
& = \{ \left< x, y \right> \mid
|
||||||
|
x \in A \land (\exists b \in \mathscr{B}), y \in b \} \\
|
||||||
|
& = \{ \left< x, y \right> \mid
|
||||||
|
(\exists b \in \mathscr{B}), x \in A \land y \in b \} \\
|
||||||
|
& = \bigcup\; \{ A \times X \mid X \in \mathscr{B} \}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\partial{Exercise 5.4}}%
|
||||||
|
\label{sub:exercise-5.4}
|
||||||
|
|
||||||
|
Show that there is no set to which every ordered pair belongs.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
For the sake of contradiction, suppose there exists a set $A$ to which every
|
||||||
|
ordered pair belongs.
|
||||||
|
That is, for all sets $x$ and $y$, $\left< x, y \right> = \{\{x\}, \{x, y\}\}$
|
||||||
|
is a member of $A$.
|
||||||
|
By the \nameref{ref:union-axiom}, it follows that $\bigcup\bigcup A$ is the
|
||||||
|
set to which every set belongs.
|
||||||
|
But \nameref{sub:theorem-2a} shows this is impossible.
|
||||||
|
Thus our original assumption was wrong; there exists no set to which every
|
||||||
|
ordered pair belongs.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\partial{Exercise 5.5a}}%
|
||||||
|
\label{sub:exercise-5.5a}
|
||||||
|
|
||||||
|
Assume that $A$ and $B$ are given sets, and show that there exists a set $C$
|
||||||
|
such that for any $y$,
|
||||||
|
$$y \in C \iff y = \{x\} \times B \text{ for some } x \text{ in } A.$$
|
||||||
|
In other words, show that $\{\{x\} \times B \mid x \in A\}$ is a set.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $A$ and $B$ be arbitrary sets.
|
||||||
|
Also let $x \in A$.
|
||||||
|
By definition of the \nameref{sub:cartesian-product},
|
||||||
|
\begin{equation}
|
||||||
|
\label{sub:exercise-5.5a-eq1}
|
||||||
|
\{x\} \times B = \{ \left< x, b \right> \mid b \in B \}.
|
||||||
|
\end{equation}
|
||||||
|
If $B = \emptyset$ then $\{x\} \times B$ trivially evaluates to the empty set,
|
||||||
|
which is a set by virtue of the \nameref{ref:empty-set-axiom}.
|
||||||
|
Therefore we continue under the assumption $B \neq \emptyset$.
|
||||||
|
|
||||||
|
We prove that (i)
|
||||||
|
$\{x\} \times B \subseteq \powerset{\powerset{(\{x\} \cup B)}}$ and then
|
||||||
|
(ii) that $\{x\} \times B$ is a set.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
\label{par:exercise-5.5a-i}
|
||||||
|
|
||||||
|
Let $t \in \{x\} \times B$.
|
||||||
|
By \eqref{sub:exercise-5.5a-eq1} and definition of an
|
||||||
|
\nameref{ref:ordered-pair}, there exists a $b \in B$ such that
|
||||||
|
$$t = \left< x, b \right> = \{\{x\}, \{x, b\}\}.$$
|
||||||
|
It trivially holds that
|
||||||
|
$$\{x\} \subseteq \{x\} \cup B \quad\text{and}\quad
|
||||||
|
\{x, b\} \subseteq \{x\} \cup B.$$
|
||||||
|
Therefore, by definition of the \nameref{ref:power-set},
|
||||||
|
$$\{x\} \in \powerset{(\{x\} \cup B)} \quad\text{and}\quad
|
||||||
|
\{x, b\} \in \powerset{(\{x\} \cup B)}.$$
|
||||||
|
But then $\{\{x\}, \{x, b\}\} \subseteq \powerset{(\{x\} \cup B)}$.
|
||||||
|
Another application of the definition of the \nameref{ref:power-set} implies
|
||||||
|
that $$\{\{x\}, \{x, b\}\} \in \powerset{\powerset{(\{x\} \cup B)}}.$$
|
||||||
|
Since this holds for all sets $t$,
|
||||||
|
$\{x\} \times B \subseteq \powerset{\powerset{(\{x\} \cup B)}}$.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
\label{par:exercise-5.5a-ii}
|
||||||
|
|
||||||
|
By the \nameref{ref:subset-axioms}, there exists a set $C$ such that for any
|
||||||
|
set $y$, $$y \in C \iff
|
||||||
|
y \in \powerset{\powerset{(\{x\} \cup B)}} \land
|
||||||
|
(\exists b \in B, y = \left< x, b \right>).$$
|
||||||
|
The above equation and \eqref{sub:exercise-5.5a-eq1} implies $C$ contains
|
||||||
|
only ordered pairs of the desired form.
|
||||||
|
By \nameref{par:exercise-5.5a-i}, $C$ contains them all.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
Since $x$ was an arbitrarily chosen member of $A$,
|
||||||
|
\nameref{par:exercise-5.5a-ii} immediately implies that
|
||||||
|
$\{\{x\} \times B \mid x \in A\}$ is indeed a set.
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\subsection{\partial{Exercise 5.5b}}%
|
||||||
|
\label{sub:exercise-5.5b}
|
||||||
|
|
||||||
|
With $A$, $B$, and $C$ as above, show that $A \times B = \bigcup C$.
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
|
||||||
|
Let $A$ and $B$ be arbitrary sets.
|
||||||
|
We want to show that
|
||||||
|
\begin{equation}
|
||||||
|
\label{sub:exercise-5.5b-eq1}
|
||||||
|
A \times B = \bigcup\; \{\{x\} \times B \mid x \in A\}.
|
||||||
|
\end{equation}
|
||||||
|
Note that \nameref{sub:cartesian-product} and \nameref{sub:exercise-5.5a}
|
||||||
|
prove the left- and right-hand sides of \eqref{sub:exercise-5.5b-eq1} are
|
||||||
|
sets respectively.
|
||||||
|
Then
|
||||||
|
\begin{align*}
|
||||||
|
A \times B
|
||||||
|
& = \{ y \mid \exists x \in A, \exists b \in B, y = \left< x, b \right> \} \\
|
||||||
|
& = \{ y \mid \exists b \in B, \exists x \in A, y = \left< x, b \right> \} \\
|
||||||
|
& = \{ y \mid \exists b \in B, y \in \{ \left< x, b \right> \mid x \in A \} \} \\
|
||||||
|
& = \{ y \mid y \in \{ \left< x, b \right> \mid x \in A \land b \in B \} \} \\
|
||||||
|
& = \{ y \mid \exists z \in \{\{x\} \times B \mid x \in A \}, y \in z \} \\
|
||||||
|
& = \bigcup \{\{x\} \times B \mid x \in A \}.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
|
@ -46,7 +46,7 @@ theorem exercise_5_1 {x y z u v w : ℕ}
|
||||||
|
|
||||||
Show that `A × (B ∪ C) = (A × B) ∪ (A × C)`.
|
Show that `A × (B ∪ C) = (A × B) ∪ (A × C)`.
|
||||||
-/
|
-/
|
||||||
theorem exercise_5_2a {A B C : Set α}
|
theorem exercise_5_2a {A : Set α} {B C : Set β}
|
||||||
: Set.prod A (B ∪ C) = (Set.prod A B) ∪ (Set.prod A C) := by
|
: Set.prod A (B ∪ C) = (Set.prod A B) ∪ (Set.prod A C) := by
|
||||||
calc Set.prod A (B ∪ C)
|
calc Set.prod A (B ∪ C)
|
||||||
_ = { p | p.1 ∈ A ∧ p.2 ∈ B ∪ C } := rfl
|
_ = { p | p.1 ∈ A ∧ p.2 ∈ B ∪ C } := rfl
|
||||||
|
@ -62,7 +62,7 @@ theorem exercise_5_2a {A B C : Set α}
|
||||||
|
|
||||||
Show that if `A × B = A × C` and `A ≠ ∅`, then `B = C`.
|
Show that if `A × B = A × C` and `A ≠ ∅`, then `B = C`.
|
||||||
-/
|
-/
|
||||||
theorem exercise_5_2b {A B C : Set α}
|
theorem exercise_5_2b {A : Set α} {B C : Set β}
|
||||||
(h : Set.prod A B = Set.prod A C) (hA : Set.Nonempty A)
|
(h : Set.prod A B = Set.prod A C) (hA : Set.Nonempty A)
|
||||||
: B = C := by
|
: B = C := by
|
||||||
by_cases hB : Set.Nonempty B
|
by_cases hB : Set.Nonempty B
|
||||||
|
@ -87,4 +87,42 @@ theorem exercise_5_2b {A B C : Set α}
|
||||||
have ⟨c, hc⟩ := Set.nonempty_iff_ne_empty.mpr (Ne.symm nC)
|
have ⟨c, hc⟩ := Set.nonempty_iff_ne_empty.mpr (Ne.symm nC)
|
||||||
exact (h (a, c)).mpr ⟨ha, hc⟩
|
exact (h (a, c)).mpr ⟨ha, hc⟩
|
||||||
|
|
||||||
|
/-- ### Exercise 5.3
|
||||||
|
|
||||||
|
Show that `A × ⋃ 𝓑 = ⋃ {A × X | X ∈ 𝓑}`.
|
||||||
|
-/
|
||||||
|
theorem exercise_5_3 {A : Set (Set α)} {𝓑 : Set (Set β)}
|
||||||
|
: Set.prod A (⋃₀ 𝓑) = ⋃₀ {Set.prod A X | X ∈ 𝓑} := by
|
||||||
|
calc Set.prod A (⋃₀ 𝓑)
|
||||||
|
_ = { p | p.1 ∈ A ∧ p.2 ∈ ⋃₀ 𝓑} := rfl
|
||||||
|
_ = { p | p.1 ∈ A ∧ ∃ b ∈ 𝓑, p.2 ∈ b } := rfl
|
||||||
|
_ = { p | ∃ b ∈ 𝓑, p.1 ∈ A ∧ p.2 ∈ b } := by
|
||||||
|
ext x
|
||||||
|
rw [Set.mem_setOf_eq]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro ⟨h₁, ⟨b, h₂⟩⟩
|
||||||
|
exact ⟨b, ⟨h₂.left, ⟨h₁, h₂.right⟩⟩⟩
|
||||||
|
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||||
|
exact ⟨h₂, ⟨b, ⟨h₁, h₃⟩⟩⟩
|
||||||
|
_ = ⋃₀ { Set.prod A p | p ∈ 𝓑 } := by
|
||||||
|
ext x
|
||||||
|
rw [Set.mem_setOf_eq]
|
||||||
|
unfold Set.sUnion sSup Set.instSupSetSet
|
||||||
|
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and]
|
||||||
|
apply Iff.intro
|
||||||
|
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||||
|
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||||
|
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||||
|
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||||
|
|
||||||
|
/-- ### Exercise 5.5b
|
||||||
|
|
||||||
|
With `A`, `B`, and `C` as above, show that `A × B = ⋃ C`.
|
||||||
|
-/
|
||||||
|
theorem exercise_5_5b {A : Set α} {B : Set β}
|
||||||
|
: Set.prod A B = ⋃₀ {Set.prod {x} B | x ∈ A} := by
|
||||||
|
-- TODO: `Set.OrderedPair` should allow two different types.
|
||||||
|
-- TODO: We can cast `(α × β)` up into type `Set (Set (α ⊕ β))`.
|
||||||
|
sorry
|
||||||
|
|
||||||
end Enderton.Set.Chapter_3
|
end Enderton.Set.Chapter_3
|
|
@ -135,7 +135,7 @@ theorem self_mem_powerset_self {A : Set α}
|
||||||
For any `Set` `A`, `∅ × A = ∅`.
|
For any `Set` `A`, `∅ × A = ∅`.
|
||||||
-/
|
-/
|
||||||
theorem prod_left_emptyset_eq_emptyset {A : Set α}
|
theorem prod_left_emptyset_eq_emptyset {A : Set α}
|
||||||
: Set.prod (∅ : Set α) A = ∅ := by
|
: Set.prod (∅ : Set β) A = ∅ := by
|
||||||
unfold prod
|
unfold prod
|
||||||
simp only [mem_empty_iff_false, false_and, setOf_false]
|
simp only [mem_empty_iff_false, false_and, setOf_false]
|
||||||
|
|
||||||
|
@ -143,7 +143,7 @@ theorem prod_left_emptyset_eq_emptyset {A : Set α}
|
||||||
For any `Set` `A`, `A × ∅ = ∅`.
|
For any `Set` `A`, `A × ∅ = ∅`.
|
||||||
-/
|
-/
|
||||||
theorem prod_right_emptyset_eq_emptyset {A : Set α}
|
theorem prod_right_emptyset_eq_emptyset {A : Set α}
|
||||||
: Set.prod A (∅ : Set α) = ∅ := by
|
: Set.prod A (∅ : Set β) = ∅ := by
|
||||||
unfold prod
|
unfold prod
|
||||||
simp only [mem_empty_iff_false, and_false, setOf_false]
|
simp only [mem_empty_iff_false, and_false, setOf_false]
|
||||||
|
|
||||||
|
@ -151,7 +151,7 @@ theorem prod_right_emptyset_eq_emptyset {A : Set α}
|
||||||
For any `Set`s `A` and `B`, if both `A` and `B` are nonempty, then `A × B` is
|
For any `Set`s `A` and `B`, if both `A` and `B` are nonempty, then `A × B` is
|
||||||
also nonempty.
|
also nonempty.
|
||||||
-/
|
-/
|
||||||
theorem prod_nonempty_nonempty_imp_nonempty_prod {A B : Set α}
|
theorem prod_nonempty_nonempty_imp_nonempty_prod {A : Set α} {B : Set β}
|
||||||
: A ≠ ∅ ∧ B ≠ ∅ ↔ Set.prod A B ≠ ∅ := by
|
: A ≠ ∅ ∧ B ≠ ∅ ↔ Set.prod A B ≠ ∅ := by
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
· intro nAB h
|
· intro nAB h
|
||||||
|
|
|
@ -12,7 +12,7 @@ def OrderedPair (x y : α) : Set (Set α) := {{x}, {x, y}}
|
||||||
|
|
||||||
namespace OrderedPair
|
namespace OrderedPair
|
||||||
|
|
||||||
theorem ext_iff {x y u v : α}
|
theorem ext_iff
|
||||||
: (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by
|
: (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by
|
||||||
unfold OrderedPair
|
unfold OrderedPair
|
||||||
apply Iff.intro
|
apply Iff.intro
|
||||||
|
|
Loading…
Reference in New Issue