Generalize set functions and move partitions in anticipation
of Apostol 1.11 exercise 8.finite-set-exercises
parent
3d0dc2b926
commit
60724c0b52
|
@ -117,7 +117,7 @@ theorem exercise_4e (x : ℝ)
|
|||
/-- ### Exercise 7b
|
||||
|
||||
If `a` and `b` are positive integers with no common factor, we have the formula
|
||||
`Σ_{n=1}^{b-1} ⌊na / b⌋ = ((a - 1)(b - 1)) / 2`. When `b = 1`, the sum on the
|
||||
`∑_{n=1}^{b-1} ⌊na / b⌋ = ((a - 1)(b - 1)) / 2`. When `b = 1`, the sum on the
|
||||
left is understood to be `0`.
|
||||
|
||||
Derive the result analytically as follows: By changing the index of summation,
|
||||
|
@ -129,4 +129,22 @@ theorem exercise_7b (ha : a > 0) (hb : b > 0) (hp : Nat.coprime a b)
|
|||
((a - 1) * (b - 1)) / 2 := by
|
||||
sorry
|
||||
|
||||
/-- ### Exercise 8
|
||||
|
||||
Let `S` be a set of points on the real line. The *characteristic function* of
|
||||
`S` is, by definition, the function `Χ` such that `Χₛ(x) = 1` for every `x` in
|
||||
`S`, and `Χₛ(x) = 0` for those `x` not in `S`. Let `f` be a step function which
|
||||
takes the constant value `cₖ` on the `k`th open subinterval `Iₖ` of some
|
||||
partition of an interval `[a, b]`. Prove that for each `x` in the union
|
||||
`I₁ ∪ I₂ ∪ ⋯ ∪ Iₙ` we have
|
||||
|
||||
```
|
||||
f(x) = ∑_{k=1}^n cₖΧ_{Iₖ}(x).
|
||||
```
|
||||
|
||||
This property is described by saying that every step function is a linear
|
||||
combination of characteristic functions of intervals.
|
||||
-/
|
||||
theorem exercise_8 : True := sorry
|
||||
|
||||
end Apostol.Chapter_1_11
|
||||
|
|
|
@ -432,23 +432,39 @@ Now apply Exercises 4(a) and (b) to the bracket on the right.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\section*{\unverified{Exercise 8}}%
|
||||
\section*{\proceeding{Exercise 8}}%
|
||||
\label{sec:exercise-8}
|
||||
|
||||
Let $S$ be a set of points on the real line.
|
||||
The \textit{characteristic function} of $S$ is, by definition, the function
|
||||
$\chi_S$ such that $\chi_S(x) = 1$ for every $x$ in $S$, and $\chi_S(x) = 0$
|
||||
for those $x$ not in $S$.
|
||||
$\mathcal{X}_S$ such that $\mathcal{X}_S(x) = 1$ for every $x$ in $S$, and
|
||||
$\mathcal{X}_S(x) = 0$ for those $x$ not in $S$.
|
||||
Let $f$ be a step function which takes the constant value $c_k$ on the $k$th
|
||||
open subinterval $I_k$ of some partition of an interval $[a, b]$.
|
||||
Prove that for each $x$ in the union $I_1 \cup I_2 \cup \cdots \cup I_n$ we have
|
||||
$$f(x) = \sum_{k=1}^n c_k\chi_{I_k}(x).$$
|
||||
$$f(x) = \sum_{k=1}^n c_k\mathcal{X}_{I_k}(x).$$
|
||||
This property is described by saying that every step function is a linear
|
||||
combination of characteristic functions of intervals.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
Let $x \in I_1 \cup I_2 \cup \cdots \cup I_n$ and $N = \{1, \ldots, n\}$.
|
||||
Let $k \in N$ such that $x \in I_k$.
|
||||
Consider an arbitrary $j \in N - \{k\}$.
|
||||
By definition of a partition, $I_j \cap I_k = \emptyset$.
|
||||
That is, $I_j$ and $I_k$ are disjoint for all $j \in N - \{k\}$.
|
||||
Therefore, by definition of the characteristic function,
|
||||
$\mathcal{X}_{I_k}(x) = 1$ and $\mathcal{X}_{I_j}(x) = 0$ for all
|
||||
$j \in N - \{k\}$.
|
||||
Thus
|
||||
\begin{align*}
|
||||
f(x)
|
||||
& = c_k \\
|
||||
& = (c_k)(1) + \sum\nolimits_{j \in N - \{k\}} (c_j)(0) \\
|
||||
& = c_k\mathcal{X}_{I_k}(x) +
|
||||
\sum\nolimits_{j \in N - \{k\}} c_j\mathcal{X}_{I_j}(x) \\
|
||||
& = \sum_{k=1}^n c_k\mathcal{X}_{I_k}(x).
|
||||
\end{align*}
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import Common.Real.Set
|
||||
import Mathlib.Data.Real.Basic
|
||||
|
||||
import Common.Set
|
||||
|
||||
/-! # Apostol.Chapter_I_03
|
||||
|
||||
|
@ -350,8 +352,8 @@ has a supremum, and `sup C = sup A + sup B`.
|
|||
theorem sup_minkowski_sum_eq_sup_add_sup (A B : Set ℝ) (a b : ℝ)
|
||||
(hA : A.Nonempty) (hB : B.Nonempty)
|
||||
(ha : IsLUB A a) (hb : IsLUB B b)
|
||||
: IsLUB (Real.minkowski_sum A B) (a + b) := by
|
||||
let C := Real.minkowski_sum A B
|
||||
: IsLUB (Set.minkowski_sum A B) (a + b) := by
|
||||
let C := Set.minkowski_sum A B
|
||||
-- First we show `a + b` is an upper bound of `C`.
|
||||
have hub : a + b ∈ upperBounds C := by
|
||||
rw [mem_upper_bounds_iff_forall_le]
|
||||
|
@ -365,7 +367,7 @@ theorem sup_minkowski_sum_eq_sup_add_sup (A B : Set ℝ) (a b : ℝ)
|
|||
-- Now we show `a + b` is the *least* upper bound of `C`. We know a least
|
||||
-- upper bound `c` exists; show that `c = a + b`.
|
||||
have ⟨c, hc⟩ := Real.exists_isLUB C
|
||||
(Real.nonempty_minkowski_sum_iff_nonempty_add_nonempty.mpr ⟨hA, hB⟩)
|
||||
(Set.nonempty_minkowski_sum_iff_nonempty_add_nonempty.mpr ⟨hA, hB⟩)
|
||||
⟨a + b, hub⟩
|
||||
suffices (∀ n : ℕ+, c ≤ a + b ∧ a + b ≤ c + (1 / n)) by
|
||||
rwa [← forall_pnat_leq_self_leq_frac_imp_eq this] at hc
|
||||
|
@ -400,8 +402,8 @@ has an infimum, and `inf C = inf A + inf B`.
|
|||
theorem inf_minkowski_sum_eq_inf_add_inf (A B : Set ℝ)
|
||||
(hA : A.Nonempty) (hB : B.Nonempty)
|
||||
(ha : IsGLB A a) (hb : IsGLB B b)
|
||||
: IsGLB (Real.minkowski_sum A B) (a + b) := by
|
||||
let C := Real.minkowski_sum A B
|
||||
: IsGLB (Set.minkowski_sum A B) (a + b) := by
|
||||
let C := Set.minkowski_sum A B
|
||||
-- First we show `a + b` is a lower bound of `C`.
|
||||
have hlb : a + b ∈ lowerBounds C := by
|
||||
rw [mem_lower_bounds_iff_forall_ge]
|
||||
|
@ -415,7 +417,7 @@ theorem inf_minkowski_sum_eq_inf_add_inf (A B : Set ℝ)
|
|||
-- Now we show `a + b` is the *greatest* lower bound of `C`. We know a
|
||||
-- greatest lower bound `c` exists; show that `c = a + b`.
|
||||
have ⟨c, hc⟩ := exists_isGLB C
|
||||
(Real.nonempty_minkowski_sum_iff_nonempty_add_nonempty.mpr ⟨hA, hB⟩)
|
||||
(Set.nonempty_minkowski_sum_iff_nonempty_add_nonempty.mpr ⟨hA, hB⟩)
|
||||
⟨a + b, hlb⟩
|
||||
suffices (∀ n : ℕ+, c - (1 / n) ≤ a + b ∧ a + b ≤ c) by
|
||||
rwa [← forall_pnat_frac_leq_self_leq_imp_eq this] at hc
|
||||
|
|
|
@ -2,3 +2,4 @@ import Common.Combinator
|
|||
import Common.List
|
||||
import Common.LTuple
|
||||
import Common.Real
|
||||
import Common.Set
|
|
@ -1,6 +1,4 @@
|
|||
import Common.Real.Basic
|
||||
import Common.Real.Function
|
||||
import Common.Real.Geometry
|
||||
import Common.Real.Rational
|
||||
import Common.Real.Sequence
|
||||
import Common.Real.Set
|
||||
import Common.Real.Sequence
|
|
@ -1 +0,0 @@
|
|||
import Common.Real.Function.Step
|
|
@ -1,67 +0,0 @@
|
|||
import Common.Real.Basic
|
||||
import Common.Real.Set.Partition
|
||||
|
||||
/-! # Common.Real.Function.Step
|
||||
|
||||
A characterization of step functions.
|
||||
-/
|
||||
|
||||
namespace Real.Function
|
||||
|
||||
open Partition
|
||||
|
||||
/--
|
||||
Any member of a subinterval of a partition `P` must also be a member of `P`.
|
||||
-/
|
||||
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
|
||||
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => Set.Ioo x₁ x₂))
|
||||
(hy : y ∈ I) : y ∈ p := by
|
||||
cases h : p.xs with
|
||||
| nil =>
|
||||
-- By definition, a partition must always have at least two points in the
|
||||
-- interval. Discharge the empty case.
|
||||
rw [h] at hI
|
||||
cases hI
|
||||
| cons x ys =>
|
||||
have ⟨i, x₁, ⟨x₂, ⟨hx₁, ⟨hx₂, hI'⟩⟩⟩⟩ :=
|
||||
List.mem_pairwise_imp_exists_adjacent hI
|
||||
have hx₁ : x₁ ∈ p.xs := by
|
||||
rw [hx₁]
|
||||
let j : Fin (List.length p.xs) := ⟨i.1, Nat.lt_of_lt_pred i.2⟩
|
||||
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
|
||||
have hx₂ : x₂ ∈ p.xs := by
|
||||
rw [hx₂]
|
||||
let j : Fin (List.length p.xs) := ⟨i.1 + 1, lt_tsub_iff_right.mp i.2⟩
|
||||
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
|
||||
rw [hI'] at hy
|
||||
apply And.intro
|
||||
· calc p.left
|
||||
_ ≤ x₁ := (subdivision_point_mem_partition hx₁).left
|
||||
_ ≤ y := le_of_lt hy.left
|
||||
· calc y
|
||||
_ ≤ x₂ := le_of_lt hy.right
|
||||
_ ≤ p.right := (subdivision_point_mem_partition hx₂).right
|
||||
|
||||
/--
|
||||
A function `f` is a `Step` function if there exists a `Partition` `p` such that
|
||||
`f` is constant on every open subinterval of `p`.
|
||||
-/
|
||||
structure Step where
|
||||
p : Partition
|
||||
f : ∀ x ∈ p, ℝ
|
||||
const_open_subintervals :
|
||||
∀ (hI : I ∈ p.xs.pairwise (fun x₁ x₂ => Set.Ioo x₁ x₂)),
|
||||
∃ c : ℝ, ∀ (hy : y ∈ I),
|
||||
f y (mem_open_subinterval_imp_mem_partition hI hy) = c
|
||||
|
||||
namespace Step
|
||||
|
||||
/--
|
||||
The set definition of a `Step` function is the region between the constant
|
||||
values of the function's subintervals and the real axis.
|
||||
-/
|
||||
def set_def (f : Step) : Set ℝ² := sorry
|
||||
|
||||
end Step
|
||||
|
||||
end Real.Function
|
|
@ -1,3 +1,4 @@
|
|||
import Common.Real.Geometry.Area
|
||||
import Common.Real.Geometry.Basic
|
||||
import Common.Real.Geometry.Rectangle
|
||||
import Common.Real.Geometry.Rectangle
|
||||
import Common.Real.Geometry.StepFunction
|
|
@ -1,5 +1,5 @@
|
|||
import Common.Real.Function.Step
|
||||
import Common.Real.Geometry.Rectangle
|
||||
import Common.Real.Geometry.StepFunction
|
||||
|
||||
/-! # Common.Real.Geometry.Area
|
||||
|
||||
|
@ -107,11 +107,11 @@ Every step region is measurable. This follows from the choice of scale axiom,
|
|||
and the fact all step regions are equivalent to the union of a collection of
|
||||
rectangles.
|
||||
-/
|
||||
theorem step_function_measurable (S : Function.Step) : S.set_def ∈ 𝓜 := by
|
||||
theorem step_function_measurable (S : StepFunction) : S.set_def ∈ 𝓜 := by
|
||||
sorry
|
||||
|
||||
def forall_subset_between_step_imp_le_between_area (k : ℝ) (Q : Set ℝ²) :=
|
||||
∀ S T : Function.Step,
|
||||
∀ S T : StepFunction,
|
||||
(hS : S.set_def ⊆ Q) →
|
||||
(hT : Q ⊆ T.set_def) →
|
||||
area (step_function_measurable S) ≤ k ∧ k ≤ area (step_function_measurable T)
|
||||
|
|
|
@ -2,20 +2,19 @@ import Mathlib.Data.Real.Basic
|
|||
import Mathlib.Data.List.Sort
|
||||
|
||||
import Common.List.Basic
|
||||
import Common.Real.Basic
|
||||
|
||||
/-! # Common.Real.Set.Partition
|
||||
/-! # Common.Real.Geometry.StepFunction
|
||||
|
||||
A description of a partition as defined in the context of stepwise functions.
|
||||
Refer to [^1] for more information.
|
||||
|
||||
[^1]: Apostol, Tom M. Calculus, Vol. 1: One-Variable Calculus, with an
|
||||
Introduction to Linear Algebra. 2nd ed. Vol. 1. 2 vols. Wiley, 1991.
|
||||
A characterization of constructs surrounding step functions.
|
||||
-/
|
||||
|
||||
namespace Real
|
||||
|
||||
open List
|
||||
|
||||
/-! ## Partition -/
|
||||
|
||||
/--
|
||||
A `Partition` is some finite subset of `[a, b]` containing points `a` and `b`.
|
||||
|
||||
|
@ -27,6 +26,8 @@ structure Partition where
|
|||
sorted : Sorted LT.lt xs
|
||||
has_min_length : xs.length ≥ 2
|
||||
|
||||
namespace Partition
|
||||
|
||||
/--
|
||||
The length of any list associated with a `Partition` is `> 0`.
|
||||
-/
|
||||
|
@ -41,8 +42,6 @@ The length of any list associated with a `Partition` is `≠ 0`.
|
|||
instance (p : Partition) : NeZero (length p.xs) where
|
||||
out := LT.lt.ne' (length_gt_zero p)
|
||||
|
||||
namespace Partition
|
||||
|
||||
/--
|
||||
The left-most subdivision point of the `Partition`.
|
||||
-/
|
||||
|
@ -103,4 +102,60 @@ theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs)
|
|||
|
||||
end Partition
|
||||
|
||||
/-! ## Step Functions -/
|
||||
|
||||
/--
|
||||
Any member of a subinterval of a partition `P` must also be a member of `P`.
|
||||
-/
|
||||
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
|
||||
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => Set.Ioo x₁ x₂))
|
||||
(hy : y ∈ I) : y ∈ p := by
|
||||
cases h : p.xs with
|
||||
| nil =>
|
||||
-- By definition, a partition must always have at least two points in the
|
||||
-- interval. Discharge the empty case.
|
||||
rw [h] at hI
|
||||
cases hI
|
||||
| cons x ys =>
|
||||
have ⟨i, x₁, ⟨x₂, ⟨hx₁, ⟨hx₂, hI'⟩⟩⟩⟩ :=
|
||||
List.mem_pairwise_imp_exists_adjacent hI
|
||||
have hx₁ : x₁ ∈ p.xs := by
|
||||
rw [hx₁]
|
||||
let j : Fin (List.length p.xs) := ⟨i.1, Nat.lt_of_lt_pred i.2⟩
|
||||
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
|
||||
have hx₂ : x₂ ∈ p.xs := by
|
||||
rw [hx₂]
|
||||
let j : Fin (List.length p.xs) := ⟨i.1 + 1, lt_tsub_iff_right.mp i.2⟩
|
||||
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
|
||||
rw [hI'] at hy
|
||||
apply And.intro
|
||||
· calc p.left
|
||||
_ ≤ x₁ := (Partition.subdivision_point_mem_partition hx₁).left
|
||||
_ ≤ y := le_of_lt hy.left
|
||||
· calc y
|
||||
_ ≤ x₂ := le_of_lt hy.right
|
||||
_ ≤ p.right := (Partition.subdivision_point_mem_partition hx₂).right
|
||||
|
||||
/--
|
||||
A function `f` is a `StepFunction` if there exists a `Partition` `p` such that
|
||||
`f` is constant on every open subinterval of `p`.
|
||||
-/
|
||||
structure StepFunction where
|
||||
p : Partition
|
||||
f : ∀ x ∈ p, ℝ
|
||||
const_open_subintervals :
|
||||
∀ (hI : I ∈ p.xs.pairwise (fun x₁ x₂ => Set.Ioo x₁ x₂)),
|
||||
∃ c : ℝ, ∀ (hy : y ∈ I),
|
||||
f y (mem_open_subinterval_imp_mem_partition hI hy) = c
|
||||
|
||||
namespace StepFunction
|
||||
|
||||
/--
|
||||
The set definition of a `StepFunction` is the region between the constant values
|
||||
of the function's subintervals and the real axis.
|
||||
-/
|
||||
def set_def (f : StepFunction) : Set ℝ² := sorry
|
||||
|
||||
end StepFunction
|
||||
|
||||
end Real
|
|
@ -1,2 +0,0 @@
|
|||
import Common.Real.Set.Basic
|
||||
import Common.Real.Set.Partition
|
|
@ -0,0 +1 @@
|
|||
import Common.Set.Basic
|
|
@ -1,23 +1,24 @@
|
|||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.Data.Set.Basic
|
||||
|
||||
/-! # Common.Real.Set.Basic
|
||||
/-! # Common.Set.Basic
|
||||
|
||||
A collection of useful definitions and theorems regarding sets.
|
||||
Additional theorems and definitions useful in the context of sets.
|
||||
-/
|
||||
|
||||
namespace Real
|
||||
namespace Set
|
||||
|
||||
/--
|
||||
/-
|
||||
The Minkowski sum of two sets `s` and `t` is the set
|
||||
`s + t = { a + b : a ∈ s, b ∈ t }`.
|
||||
-/
|
||||
def minkowski_sum (s t : Set ℝ) :=
|
||||
def minkowski_sum {α : Type u} [Add α] (s t : Set α) :=
|
||||
{ x | ∃ a ∈ s, ∃ b ∈ t, x = a + b }
|
||||
|
||||
/--
|
||||
The sum of two sets is nonempty **iff** the summands are nonempty.
|
||||
-/
|
||||
def nonempty_minkowski_sum_iff_nonempty_add_nonempty {s t : Set ℝ}
|
||||
theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α]
|
||||
{s t : Set α}
|
||||
: (minkowski_sum s t).Nonempty ↔ s.Nonempty ∧ t.Nonempty := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
|
@ -29,4 +30,12 @@ def nonempty_minkowski_sum_iff_nonempty_add_nonempty {s t : Set ℝ}
|
|||
· intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
|
||||
exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩
|
||||
|
||||
end Real
|
||||
/--
|
||||
The characteristic function of a set `S`.
|
||||
|
||||
It returns `1` if the specified input belongs to `S` and `0` otherwise.
|
||||
-/
|
||||
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)]: Nat :=
|
||||
if x ∈ S then 1 else 0
|
||||
|
||||
end Set
|
Loading…
Reference in New Issue