Enderton (set). Testing cross-referencing.
parent
70e51584a5
commit
4e6630ab45
|
@ -1 +1,3 @@
|
|||
import Bookshelf.Enderton.Logic.Chapter_0
|
||||
import Bookshelf.Enderton.Logic.Chapter_0
|
||||
|
||||
#check Iff
|
|
@ -3,6 +3,8 @@
|
|||
\input{../../preamble}
|
||||
\makecode{../..}
|
||||
|
||||
\externaldocument[S:]{Set}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\header{A Mathematical Introduction to Logic}{Herbert B. Enderton}
|
||||
|
@ -42,21 +44,11 @@
|
|||
if and only if, for some positive integer $n$, we have
|
||||
$S = \ltuple{x_1}{x_n}$, where each $x_i \in A$.
|
||||
|
||||
\section{\defined{\texorpdfstring{$n$}{n}-tuple}}%
|
||||
\hyperlabel{ref:n-tuple}
|
||||
\section{\defined{Formula-Building Operations}}%
|
||||
\hyperlabel{ref:formula-building-operations}
|
||||
|
||||
An \textbf{$n$-tuple} is recursively defined as
|
||||
$$\ltuple{x_1}{x_{n+1}} = \tuple{\ltuple{x_1}{x_n}, x_{n+1}}$$
|
||||
for $n > 1$.
|
||||
We also define $\tuple{x} = x$.
|
||||
|
||||
\section{\defined{Well-Formed Formula}}%
|
||||
\hyperlabel{ref:well-formed-formula}
|
||||
|
||||
A \textbf{well-formed formula} (wff) is an \nameref{ref:expression} that can
|
||||
be built up from the sentence symbols by applying some finite number of
|
||||
times the \textbf{formula-building operations} (on expressions) defined by
|
||||
the equations:
|
||||
The \textbf{formula-building operations} (on expressions) are defined by the
|
||||
equations:
|
||||
\begin{align*}
|
||||
\mathcal{E}_{\neg}(\alpha)
|
||||
& = (\neg \alpha) \\
|
||||
|
@ -70,6 +62,31 @@ We also define $\tuple{x} = x$.
|
|||
& = (\alpha \Leftrightarrow \beta)
|
||||
\end{align*}
|
||||
|
||||
\lean{Init/Prelude}{Not}
|
||||
|
||||
\lean{Init/Prelude}{And}
|
||||
|
||||
\lean{Init/Prelude}{Or}
|
||||
|
||||
\lean{Init/Core}{Iff}
|
||||
|
||||
\section{\defined{\texorpdfstring{$n$}{n}-tuple}}%
|
||||
\hyperlabel{ref:n-tuple}
|
||||
|
||||
An \textbf{$n$-tuple} is recursively defined as
|
||||
$$\ltuple{x_1}{x_{n+1}} = \tuple{\ltuple{x_1}{x_n}, x_{n+1}}$$
|
||||
for $n > 1$.
|
||||
We also define $\tuple{x} = x$.
|
||||
|
||||
\lean*{Init/Prelude}{Prod}
|
||||
|
||||
\section{\defined{Well-Formed Formula}}%
|
||||
\hyperlabel{ref:well-formed-formula}
|
||||
|
||||
A \textbf{well-formed formula} (wff) is an \nameref{ref:expression} that can
|
||||
be built up from the sentence symbols by applying some finite number of
|
||||
times the \nameref{ref:formula-building-operations}.
|
||||
|
||||
\endgroup
|
||||
|
||||
% Reset counter to mirror Enderton's book.
|
||||
|
@ -219,26 +236,119 @@ We also define $\tuple{x} = x$.
|
|||
\section{Exercises 1}%
|
||||
\hyperlabel{sec:exercises-1}
|
||||
|
||||
\subsection{\sorry{Exercise 1.1.1}}%
|
||||
\subsection{\unverified{Exercise 1.1.1}}%
|
||||
\hyperlabel{sub:exercise-1.1.1}
|
||||
|
||||
Give three sentences in English together with translations into our formal
|
||||
language.
|
||||
The sentences shoudl be chosen so as to have an interesting structure, and the
|
||||
The sentences should be chosen so as to have an interesting structure, and the
|
||||
translations should each contain 15 or more symbols.
|
||||
|
||||
\begin{answer}
|
||||
TODO
|
||||
|
||||
We begin first with the English sentences:
|
||||
\begin{enumerate}[i]
|
||||
\item He can juggle beach balls, bowling pins, and hackysacks unless
|
||||
he is tired, in which case he can only juggle beach balls.
|
||||
\item
|
||||
If Lauren goes to the moves with Sam, he will watch Barbie and
|
||||
eat popcorn, but if Lauren does not, he will watch Oppenheimer and
|
||||
eat gummy worms.
|
||||
\item
|
||||
Trees produce oxygen if they are alive and well, able to pull
|
||||
nutrients from the earth, and receive ample water.
|
||||
\end{enumerate}
|
||||
|
||||
\paragraph{(i)}%
|
||||
|
||||
We use the following translation: "To juggle beach balls" (B),
|
||||
"to juggle bowling pins" (P), "to juggle hackysacks" (H), and
|
||||
"he is tired" (T).
|
||||
This yields the following translation:
|
||||
$$(B \land ((\neg T) \Rightarrow (P \land H))).$$
|
||||
|
||||
\paragraph{(ii)}%
|
||||
|
||||
We use the following translation: "Lauren goes to the movies" (L),
|
||||
"Sam will watch Oppenheimer" (O), "Sam will watch "Barbie" (B),
|
||||
"Sam will eat popcorn" (P), and "Sam will eay gummy worms" (G).
|
||||
This yields the following translation:
|
||||
$$(((L \land B) \land P) \lor (((\neg L) \land O) \land G)).$$
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
We use the following translation: "Trees produce oxygen" (O),
|
||||
"the tree is alive" (A), "the tree is well" (W), "can pull nutrients
|
||||
from the earth" (N), and "receives ample water" (R).
|
||||
This yields the following translation:
|
||||
$$(O \iff (((A \land W) \land N) \land R)).$$
|
||||
|
||||
\end{answer}
|
||||
|
||||
\subsection{\sorry{Exercise 1.1.2}}%
|
||||
\subsection{\unverified{Exercise 1.1.2}}%
|
||||
\hyperlabel{sub:exercise-1.1.2}
|
||||
|
||||
Show that there are no wffs of length 2, 3, or 6, but that any other positive
|
||||
length is possible.
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
|
||||
Define $$S = \{ \phi \mid
|
||||
\phi \text{ is a wff and the length of } \phi
|
||||
\text{ is not } 2, 3, \text{or } 6. \}.$$
|
||||
We prove that (i) all the sentence symbols are members of $S$ and (ii)
|
||||
$S$ is closed under the five \nameref{ref:formula-building-operations}.
|
||||
We then conclude with (iii) the proof of the theorem statement.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:exercise-1.1.2-i}
|
||||
|
||||
Sentence symbols, by definition, have length 1.
|
||||
Thus every sentence symbol is a member of $S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:exercise-1.1.2-ii}
|
||||
|
||||
Define $L$ to be the length function mapping arbitrary wff to its length.
|
||||
Let $\phi, \psi \in S$.
|
||||
Then $L(\phi)$ and $L(\psi)$ each evaluate to 1, 4, 5, or a value larger
|
||||
than 6.
|
||||
|
||||
By definition, $\mathcal{E}_{\neg}(\phi) = (\neg \phi)$.
|
||||
Thus $L(\mathcal{E}_{\neg}(\phi)) = L(\phi) + 3$.
|
||||
Enumerating through the possible values of $L(\phi)$ shows
|
||||
$\mathcal{E}_{\neg}(\phi) \in S$.
|
||||
Likewise,
|
||||
$\mathcal{E}_{\square}(\phi, \psi) = (\phi \mathop{\square} \psi)$
|
||||
where $\square$ is one of the binary connectives $\land$, $\lor$,
|
||||
$\Rightarrow$, $\Leftrightarrow$.
|
||||
Thus $L(\mathcal{E}_{\square}(\phi, \psi)) = L(\phi) + L(\psi) + 3$.
|
||||
Again, enumerating through the possible values of $L(\phi)$ and $L(\psi)$
|
||||
shows $\mathcal{E}_{\square}(\phi, \psi) \in S$.
|
||||
|
||||
Hence $S$ is closed under the five formula-building operations.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:exercise-1.1.2-i} and \nameref{par:exercise-1.1.2-ii}, the
|
||||
\nameref{sub:induction-principle-1} implies $S$ is the set of all wffs.
|
||||
It remains to be shown that a wff of any positive length excluding 2, 3,
|
||||
and 6 are possible.
|
||||
|
||||
Let $\phi_1 = A_1$, $\phi_2 = (A_1 \land A_2)$, and
|
||||
$\phi_3 = ((A_1 \land A_2) \land A_3)$.
|
||||
Note these are wffs of lengths 1, 5, and 9 respectively.
|
||||
Then $n$ repeated applications of $\mathcal{E}_{\neg}$ yields wffs of
|
||||
length $1 + 3n$, $5 + 3n$, and $9 + 3n$ respectively.
|
||||
But
|
||||
\begin{align*}
|
||||
& \{ 1 + 3n \mid n \in \mathbb{N} \}, \\
|
||||
& \{ 5 + 3n \mid n \in \mathbb{N} \}, \text{ and } \\
|
||||
& \{ 9 + 3n \mid n \in \mathbb{N} \}
|
||||
\end{align*}
|
||||
form a \nameref{S:ref:partition} of set $\mathbb{N} - \{ 2, 3, 6 \}$.
|
||||
Thus a wff of any other positive length besides 2, 3, and 6 is possible.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 1.1.3}}%
|
||||
|
|
Loading…
Reference in New Issue