Enderton (logic). Begin proving inducting statements.
parent
bbae7136b1
commit
70e51584a5
|
@ -18,9 +18,9 @@
|
|||
\section{\defined{Construction Sequence}}%
|
||||
\hyperlabel{ref:construction-sequence}
|
||||
|
||||
A \textbf{construction sequence} is a finite sequence
|
||||
$\langle \epsilon_1, \ldots, \epsilon_n \rangle$ of expressions such that
|
||||
for each $i \leq n$ we have at least one of
|
||||
A \textbf{construction sequence} is a \nameref{ref:finite-sequence}
|
||||
$\ltuple{\epsilon_1}{\epsilon_n}$ of \nameref{ref:expression}s such that for
|
||||
each $i \leq n$ we have at least one of
|
||||
\begin{align*}
|
||||
& \epsilon_i \text{ is a sentence symbol} \\
|
||||
& \epsilon_i = \mathcal{E}_\neg(\epsilon_j) \text{ for some } j < i \\
|
||||
|
@ -33,7 +33,14 @@
|
|||
\section{\defined{Expression}}%
|
||||
\hyperlabel{ref:expression}
|
||||
|
||||
An \textbf{expression} is a finite sequence of symbols.
|
||||
An \textbf{expression} is a \nameref{ref:finite-sequence} of symbols.
|
||||
|
||||
\section{\defined{Finite Sequence}}%
|
||||
\hyperlabel{ref:finite-sequence}
|
||||
|
||||
$S$ is a \textbf{finite sequence} (or \textbf{string}) of members of set $A$
|
||||
if and only if, for some positive integer $n$, we have
|
||||
$S = \ltuple{x_1}{x_n}$, where each $x_i \in A$.
|
||||
|
||||
\section{\defined{\texorpdfstring{$n$}{n}-tuple}}%
|
||||
\hyperlabel{ref:n-tuple}
|
||||
|
@ -46,10 +53,10 @@ We also define $\tuple{x} = x$.
|
|||
\section{\defined{Well-Formed Formula}}%
|
||||
\hyperlabel{ref:well-formed-formula}
|
||||
|
||||
An \nameref{ref:expression} that can be built up from the sentence symbols by
|
||||
applying some finite number of times the
|
||||
\textbf{formula-building operations} (on expressions) defined by the
|
||||
equations:
|
||||
A \textbf{well-formed formula} (wff) is an \nameref{ref:expression} that can
|
||||
be built up from the sentence symbols by applying some finite number of
|
||||
times the \textbf{formula-building operations} (on expressions) defined by
|
||||
the equations:
|
||||
\begin{align*}
|
||||
\mathcal{E}_{\neg}(\alpha)
|
||||
& = (\neg \alpha) \\
|
||||
|
@ -82,11 +89,11 @@ We also define $\tuple{x} = x$.
|
|||
\begin{proof}
|
||||
|
||||
For natural number $m$, let $P(m)$ be the statement:
|
||||
\begin{assumption}
|
||||
\hyperlabel{sec:lemma-0a-eq1}
|
||||
\text{If } \ltuple{x_1}{x_m} = \ltuple{y_1, \ldots, y_m}{y_{m+k}}
|
||||
\text{ then } x_1 = \ltuple{y_1}{y_{k+1}}.
|
||||
\end{assumption}
|
||||
\begin{induction}
|
||||
\hyperlabel{sec:lemma-0a-ih}
|
||||
If $\ltuple{x_1}{x_m} = \ltuple{y_1, \ldots, y_m}{y_{m+k}}$
|
||||
then $x_1 = \ltuple{y_1}{y_{k+1}}$.
|
||||
\end{induction}
|
||||
\noindent
|
||||
We proceed by induction on $m$.
|
||||
|
||||
|
@ -101,16 +108,16 @@ We also define $\tuple{x} = x$.
|
|||
|
||||
Suppose for $m \geq 1$ that $P(m)$ is true and assume
|
||||
\begin{equation}
|
||||
\hyperlabel{sec:lemma-0a-eq2}
|
||||
\hyperlabel{sec:lemma-0a-eq1}
|
||||
\ltuple{x_1}{x_{m+1}} = \ltuple{y_1, \ldots, y_{m+1}}{y_{m+1+k}}.
|
||||
\end{equation}
|
||||
By definition of an \nameref{ref:n-tuple}, we can decompose
|
||||
\eqref{sec:lemma-0a-eq2} into the following two identities
|
||||
\eqref{sec:lemma-0a-eq1} into the following two identities
|
||||
\begin{align*}
|
||||
x_{m+1} & = y_{m+1+k} \\
|
||||
\ltuple{x_1}{x_m} & = \ltuple{y_1}{y_{m+k}}.
|
||||
\end{align*}
|
||||
By \eqref{sec:lemma-0a-eq1}, $P(m)$ implies $x_1 = \ltuple{y_1}{y_{k+1}}$.
|
||||
By \ihref{sec:lemma-0a-ih}, $P(m)$ implies $x_1 = \ltuple{y_1}{y_{k+1}}$.
|
||||
Hence $P(m+1)$ holds true.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
@ -125,7 +132,7 @@ We also define $\tuple{x} = x$.
|
|||
\section{The Language of Sentential Logic}%
|
||||
\hyperlabel{sec:language-sentential-logic}
|
||||
|
||||
\subsection{\sorry{Induction Principle}}%
|
||||
\subsection{\unverified{Induction Principle}}%
|
||||
\hyperlabel{sub:induction-principle-1}
|
||||
|
||||
\begin{theorem}
|
||||
|
@ -135,7 +142,78 @@ We also define $\tuple{x} = x$.
|
|||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
We note every \nameref{ref:well-formed-formula} can be characterized by a
|
||||
\nameref{ref:construction-sequence}.
|
||||
For natural number $m$, let $P(m)$ be the statement:
|
||||
\begin{induction}
|
||||
\hyperlabel{sub:induction-principle-1-ih}
|
||||
Every wff characterized by a construction sequence of length $m$ is in
|
||||
$S$.
|
||||
\end{induction}
|
||||
\noindent
|
||||
We proceed by strong induction on $m$.
|
||||
|
||||
\paragraph{Base Case}%
|
||||
|
||||
Let $\phi$ denote a wff characterized by a construction sequence of length
|
||||
$1$.
|
||||
Then it must be that $\phi$ is a single sentence symbol.
|
||||
By hypothesis, $S$ contains all the sentence symbols.
|
||||
Thus $P(1)$ holds true.
|
||||
|
||||
\paragraph{Inductive Step}%
|
||||
|
||||
Suppose $P(0)$, $P(1)$, $\ldots$, $P(m)$ holds true and let $\phi$ denote
|
||||
a wff characterized by a construction sequence of length $m + 1$.
|
||||
By definition of a construction sequence, one of the following holds:
|
||||
\begin{align}
|
||||
& \phi \text{ is a sentence symbol}
|
||||
& \label{sub:induction-principle-1-eq1} \\
|
||||
& \phi = \mathcal{E}_\neg(\epsilon_j)
|
||||
\text{ for some } j < m + 1
|
||||
& \label{sub:induction-principle-1-eq2} \\
|
||||
& \phi = \mathcal{E}_\square(\epsilon_j, \epsilon_k)
|
||||
\text{ for some } j < m + 1, k < m + 1
|
||||
& \label{sub:induction-principle-1-eq3}
|
||||
\end{align}
|
||||
where $\square$ is one of the binary connectives $\land$, $\lor$,
|
||||
$\Rightarrow$, $\Leftrightarrow$.
|
||||
We consider each case in turn.
|
||||
|
||||
\subparagraph{\eqref{sub:induction-principle-1-eq1}}%
|
||||
|
||||
By hypothesis, all sentence symbols are in $S$.
|
||||
Thus $\phi \in S$.
|
||||
|
||||
\subparagraph{\eqref{sub:induction-principle-1-eq2}}%
|
||||
|
||||
Suppose $\phi = \mathcal{E}_\neg(\epsilon_j)$ for some $j < m + 1$.
|
||||
By \ihref{sub:induction-principle-1-ih}, $\epsilon_j$ is in $S$.
|
||||
By hypothesis, $S$ is closed under $\mathcal{E}_\neg$.
|
||||
Thus $\phi \in S$.
|
||||
|
||||
\subparagraph{\eqref{sub:induction-principle-1-eq3}}%
|
||||
|
||||
Suppose $\phi = \mathcal{E}_\square(\epsilon_j, \epsilon_k)$ for some
|
||||
$j < m + 1, k < m + 1$,
|
||||
By \ihref{sub:induction-principle-1-ih}, $\epsilon_j$ and $\epsilon_k$
|
||||
is in $S$.
|
||||
By hypothesis, $S$ is closed under $\mathcal{E}_\square$ for all
|
||||
possible candidates of $\square$.
|
||||
Thus $\phi \in S$.
|
||||
|
||||
\subparagraph{Subconclusion}%
|
||||
|
||||
Since the above three cases are exhaustive, $P(m + 1)$ holds.
|
||||
|
||||
\paragraph{Conclusion}%
|
||||
|
||||
By strong induction, $P(m)$ holds true for all natural numbers $m \geq 1$.
|
||||
Since every well-formed formula is characterized by a construction
|
||||
sequence, the set of all wffs is a subset of $S$.
|
||||
Likewise, it obviously holds that $S$ is a subset of all wffs.
|
||||
Thus $S$ is precisely the set of all wffs.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 1}%
|
||||
|
|
|
@ -5929,7 +5929,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
Thus $F(v_1(n)) = F(y) = F(v_2(n))$ and $h(n^+) = F(y)$.
|
||||
Therefore $n^+ \in S$.
|
||||
|
||||
\subparagraph{Conclusion}%
|
||||
\subparagraph{Subconclusion}%
|
||||
|
||||
By \nameref{spar:recursion-theorem-natural-numbers-i-1} and
|
||||
\nameref{spar:recursion-theorem-natural-numbers-i-2}, $S$ is an
|
||||
|
@ -6002,7 +6002,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
|
|||
\end{enumerate}
|
||||
Since $v'$ is acceptable, $n^+ \in \dom{h}$.
|
||||
|
||||
\subparagraph{Conclusion}%
|
||||
\subparagraph{Subconclusion}%
|
||||
|
||||
By \nameref{spar:recursion-theorem-natural-numbers-iii-1} and
|
||||
\nameref{spar:recursion-theorem-natural-numbers-iii-2},
|
||||
|
|
22
preamble.tex
22
preamble.tex
|
@ -92,21 +92,15 @@
|
|||
% Admonitions
|
||||
% ========================================
|
||||
|
||||
\newcommand\@assumptionbody[1]{
|
||||
\begin{equation}
|
||||
\setlength{\abovedisplayskip}{0pt}
|
||||
\setlength{\belowdisplayskip}{0pt}
|
||||
#1
|
||||
\end{equation}}
|
||||
\NewEnviron{induction}[1][]{%
|
||||
\def\title{\ifstrempty{#1}
|
||||
{Induction Hypothesis (IH)}
|
||||
{#1}}
|
||||
\begin{tcolorbox}[title=\title]
|
||||
\BODY
|
||||
\end{tcolorbox}}
|
||||
|
||||
\NewEnviron{assumption}[1][]{%
|
||||
\ifstrempty{#1}{%
|
||||
\begin{tcolorbox}[bottom=8pt]
|
||||
\@assumptionbody{\BODY}
|
||||
\end{tcolorbox}}{%
|
||||
\begin{tcolorbox}[title=#1,bottom=8pt]
|
||||
\@assumptionbody{\BODY}
|
||||
\end{tcolorbox}}}
|
||||
\newcommand{\ihref}[1]{\hyperref[#1]{(IH)}}
|
||||
|
||||
\NewEnviron{note}{%
|
||||
\begin{tcolorbox}[%
|
||||
|
|
Loading…
Reference in New Issue