Enderton. Additional equivalence relation definitions.
parent
8294d9583c
commit
48ed3cd59e
Bookshelf/Enderton
|
@ -71,8 +71,8 @@ There is a set having no members:
|
|||
\section{\pending{Equivalence Relation}}%
|
||||
\label{ref:equivalence-relation}
|
||||
|
||||
Relation $R$ is an \textbf{equivalence relation} if and only if $R$ is a binary
|
||||
\nameref{ref:relation} that is \nameref{ref:reflexive},
|
||||
Relation $R$ is an \textbf{equivalence relation} on set $A$ if and only if
|
||||
$R$ is a binary \nameref{ref:relation} that is \nameref{ref:reflexive} on $A$,
|
||||
\nameref{ref:symmetric}, and \nameref{ref:transitive}.
|
||||
|
||||
\section{\defined{Extensionality Axiom}}%
|
||||
|
@ -202,6 +202,16 @@ For any sets $u$ and $v$, there is a set having as members just $u$ and $v$:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\pending{Partition}}%
|
||||
\label{ref:partition}
|
||||
|
||||
A \textbf{partition} $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that
|
||||
is disjoint and exhaustive, i.e.
|
||||
\begin{enumerate}[(a)]
|
||||
\item no two different sets in $\Pi$ have any common elements, and
|
||||
\item each element of $A$ is in some set in $\Pi$.
|
||||
\end{enumerate}
|
||||
|
||||
\section{\defined{Power Set}}%
|
||||
\label{ref:power-set}
|
||||
|
||||
|
@ -226,6 +236,14 @@ For any set $a$, there is a set whose members are exactly the subsets of $a$:
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\pending{Quotient Set}}%
|
||||
\label{ref:quotient-set}
|
||||
|
||||
If $R$ is an \nameref{ref:equivalence-relation} on set $A$, then we can define
|
||||
the \textbf{quotient set} $$A / R = \{[x]_R \mid x \in A\}$$ whose members are
|
||||
the equivalence classes.
|
||||
The expression $A / R$ is read "$A$ modulo $R$.
|
||||
|
||||
\section{\defined{Range}}%
|
||||
\label{ref:range}
|
||||
|
||||
|
@ -283,8 +301,8 @@ For each formula $\phi$ not containing $B$, the following is an axiom:
|
|||
\section{\pending{Symmetric}}%
|
||||
\label{ref:symmetric}
|
||||
|
||||
A binary relation $R$ is \textbf{symmetric} on $A$ if and only if whenever
|
||||
$xRy$ then $yRx$.
|
||||
A binary relation $R$ is \textbf{symmetric} if and only if whenever $xRy$ then
|
||||
$yRx$.
|
||||
|
||||
\section{\defined{Symmetric Difference}}%
|
||||
\label{ref:symmetric-difference}
|
||||
|
@ -301,15 +319,16 @@ The \textbf{symmetric difference} $A + B$ of sets $A$ and $B$ is the set
|
|||
\section{\pending{Transitive}}%
|
||||
\label{ref:transitive}
|
||||
|
||||
A binary relation $R$ is \textbf{transitive} on $A$ if and only if whenever
|
||||
$xRy$ and $yRz$, then $xRz$.
|
||||
A binary relation $R$ is \textbf{transitive} if and only if whenever $xRy$ and
|
||||
$yRz$, then $xRz$.
|
||||
|
||||
\section{\defined{Union Axiom}}%
|
||||
\label{ref:union-axiom}
|
||||
|
||||
For any set $A$, there exists a set $B$ whose elements are exactly the members
|
||||
of the members of $A$:
|
||||
$$\forall A, \exists B, \forall x \left[ x \in B \iff (\exists b \in A) x \in b \right]$$
|
||||
$$\forall A, \exists B, \forall x
|
||||
\left[ x \in B \iff (\exists b \in A) x \in b \right]$$
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
|
@ -3187,9 +3206,10 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
|||
\nameref{ref:relation}.
|
||||
By definition, the \nameref{ref:field} of $R$ is given by
|
||||
$\fld{R} = \dom{R} \cup \ran{R}$.
|
||||
An \nameref{ref:equivalence-relation} is, by definition, a
|
||||
\nameref{ref:reflexive}, symmetric, and transitive relation.
|
||||
Thus all that remains is to show $R$ is reflexive on $\fld{R}$.
|
||||
An \nameref{ref:equivalence-relation} on $\fld{R}$ is, by definition, a
|
||||
binary relation \nameref{ref:reflexive} on $\fld{R}$, symmetric, and
|
||||
transitive.
|
||||
All that remains is to show $R$ is reflexive on $\fld{R}$.
|
||||
|
||||
Let $x \in \fld{R}$.
|
||||
Then $x \in \dom{R}$ or $x \in \ran{R}$.
|
||||
|
@ -3203,6 +3223,69 @@ For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Lemma 3N}}%
|
||||
\label{sub:lemma-3n}
|
||||
|
||||
\begin{lemma}[3N]
|
||||
|
||||
Assume that $R$ is an equivalence relation on $A$ and that $x$ and $y$ belong
|
||||
to $A$.
|
||||
Then $$[x]_R = [y]_R \iff xRy.$$
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Suppose $R$ is an \nameref{ref:equivalence-relation} on set $A$.
|
||||
Let $x, y \in A$.
|
||||
|
||||
\paragraph{($\Rightarrow$)}%
|
||||
|
||||
Suppose $[x]_R = [y]_R$.
|
||||
Since $R$ is an equivalence relation, it is reflexive on $A$.
|
||||
Thus $yRy$ meaning $y \in [y]_R = \{t \mid yRt\}$.
|
||||
Since $[x]_R = [y]_R$, $y \in \{t \mid xRt\}$ as well.
|
||||
That is, $xRy$.
|
||||
|
||||
\paragraph{($\Leftarrow$)}%
|
||||
|
||||
Suppose $xRy$.
|
||||
We show $[x]_R \subseteq [y]_R$ and $[y]_R \subseteq [x]_R$.
|
||||
|
||||
\subparagraph{($\subseteq$)}%
|
||||
|
||||
Let $t \in [x]_R$.
|
||||
Then $xRt$.
|
||||
Since $R$ is symmetric, $xRy$ implies $yRx$.
|
||||
Since $R$ is transitive, $yRx$ and $xRt$ implies $yRt$.
|
||||
Thus $t \in [y]_R$.
|
||||
|
||||
\subparagraph{($\supseteq$)}%
|
||||
|
||||
Let $t \in [y]_R$.
|
||||
Then $yRt$.
|
||||
Since $R$ is transitive, $xRy$ and $yRt$ implies $xRt$.
|
||||
Thus $t \in [x]_R$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 3P}}%
|
||||
\label{sub:theorem-3p}
|
||||
|
||||
\begin{theorem}[3P]
|
||||
|
||||
Assume that $R$ is an equivalence relation on $A$.
|
||||
Then the set $\{[x]_R \mid x \in A\}$ of all equivalence classes is a
|
||||
partition of $A$.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 3}%
|
||||
\label{sec:exercises-3}
|
||||
|
||||
|
|
Loading…
Reference in New Issue