diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index cf527a2..3b39031 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -2792,36 +2792,127 @@ Show that if $R$ is a relation, then $\fld{R} = \bigcup\bigcup R$. \end{proof} -\subsection{\unverified{Exercise 6.8}}% +\subsection{\verified{Exercise 6.8}}% \label{sub:exercise-6.8} Show that for any set $\mathscr{A}$: \begin{align} \dom{\bigcup{\mathscr{A}}} - & = \bigcup\; \{ \dom{R} \mid R \in \mathscr{A} \}, + & = \bigcup\;\{ \dom{R} \mid R \in \mathscr{A} \}, & \label{sub:exercise-6.8-eq1} \\ \ran{\bigcup{\mathscr{A}}} - & = \bigcup\; \{ \ran{R} \mid R \in \mathscr{A} \}. + & = \bigcup\;\{ \ran{R} \mid R \in \mathscr{A} \}. & \label{sub:exercise-6.8-eq2} \end{align} \begin{proof} - TODO + \statementpadding + + \lean*{Bookshelf/Enderton/Set/Chapter\_3} + {Enderton.Set.Chapter\_3.exercise\_6\_8\_i} + + \lean{Bookshelf/Enderton/Set/Chapter\_3} + {Enderton.Set.Chapter\_3.exercise\_6\_8\_ii} + + We prove (i) \eqref{sub:exercise-6.8-eq1} and then (ii) + \eqref{sub:exercise-6.8-eq2}. + + \paragraph{(i)}% + + Let $x \in \dom{\bigcup{\mathscr{A}}}$. + By definition of a domain, there exists some $y$ such that + $\left< x, y \right> \in \bigcup{\mathscr{A}}$. + By definition of the union of sets, + $\exists y, \exists R \in \mathscr{A}, \left< x, y \right> \in R$. + Equivalently, + $\exists R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$. + By another application of the definition of a domain, + $\exists R \in \mathscr{A}, x \in \dom{R}$. + By another application of the definition of the union of sets, + $x \in \bigcup\;\{ \dom{R} \mid R \in \mathscr{A} \}$. + Since membership of these two sets holds biconditionally, it follows + \eqref{sub:exercise-6.8-eq1} holds. + + \paragraph{(ii)}% + + Let $x \in \ran{\bigcup{\mathscr{A}}}$. + By definition of a range, there exists some $t$ such that + $\left< t, x \right> \in \bigcup{\mathscr{A}}$. + By definition of the union of sets, + $\exists t, \exists R \in \mathscr{A}, \left< t, x \right> \in R$. + Equivalently, + $\exists R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$. + By another application of the definition of a range, + $\exists R \in \mathscr{A}, x \in \ran{R}$. + By another application of the definition of the union of sets, + $x \in \bigcup\;\{ \ran{R} \mid R \in \mathscr{A} \}$. + Since membership of these two sets holds biconditionally, it follows + \eqref{sub:exercise-6.8-eq2} holds. \end{proof} -\subsection{\unverified{Exercise 6.9}}% +\subsection{\verified{Exercise 6.9}}% \label{sub:exercise-6.9} Discuss the result of replacing the union operation by the intersection operation in the preceding problem. -\begin{proof} +\begin{answer} - TODO + \statementpadding -\end{proof} + \lean*{Bookshelf/Enderton/Set/Chapter\_3} + {Enderton.Set.Chapter\_3.exercise\_6\_9\_i} + + \lean{Bookshelf/Enderton/Set/Chapter\_3} + {Enderton.Set.Chapter\_3.exercise\_6\_9\_ii} + + Replacing the union operation with the intersection problem produces the + following relationships + \begin{align} + \dom{\bigcap{\mathscr{A}}} + & \subseteq \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \}, + & \label{sub:exercise-6.9-eq1} \\ + \ran{\bigcap{\mathscr{A}}} + & \subseteq \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}. + & \label{sub:exercise-6.9-eq2} + \end{align} + + We prove (i) \eqref{sub:exercise-6.9-eq1} and then (ii) + \eqref{sub:exercise-6.9-eq2}. + + \paragraph{(i)}% + + Let $x \in \dom{\bigcap{\mathscr{A}}}$. + By definition of the domain of a set, + $\exists y, \left< x, y \right> \in \bigcap{\mathscr{A}}$. + By definition of the intersection of sets, + $\exists y, \forall R \in \mathscr{A}, \left< x, y \right> \in R$. + But this implies that + $\forall R \in \mathscr{A}, \exists y, \left< x, y \right> \in R$. + By another application of the definition of the domain of a set, + $\forall R \in \mathscr{A}, x \in \dom{R}$. + By another application of the intersection of sets, + $x \in \bigcap\;\{ \dom{R} \mid R \in \mathscr{A} \}$. + Thus \eqref{sub:exercise-6.9-eq1} holds. + + \paragraph{(ii)}% + + Let $x \in \ran{\bigcap{\mathscr{A}}}$. + By definition of the range of a set, + $\exists t, \left< t, x \right> \in \bigcap{\mathscr{A}}$. + By definition of the intersection of sets, + $\exists t, \forall R \in \mathscr{A}, \left< t, x \right> \in R$. + But this implies that + $\forall R \in \mathscr{A}, \exists t, \left< t, x \right> \in R$. + By another application of the definition of the domain of a set, + $\forall R \in \mathscr{A}, x \in \ran{R}$. + By another application of the intersection of sets, + $x \in \bigcap\;\{ \ran{R} \mid R \in \mathscr{A} \}$. + Thus \eqref{sub:exercise-6.9-eq2} holds. + +\end{answer} \section{Exercises 7}% \label{sec:exercises-7} diff --git a/Bookshelf/Enderton/Set/Chapter_3.lean b/Bookshelf/Enderton/Set/Chapter_3.lean index 8fe6ec3..769f25d 100644 --- a/Bookshelf/Enderton/Set/Chapter_3.lean +++ b/Bookshelf/Enderton/Set/Chapter_3.lean @@ -329,4 +329,107 @@ theorem exercise_6_7 {R : Set.Relation α} simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at this exact hxy_mem this +/-- ### Exercise 6.8i + +Show that for any set `𝓐`: +``` +dom ⋃ A = ⋃ { dom R | R ∈ 𝓐 } +``` +-/ +theorem exercise_6_8_i {A : Set (Set.Relation α)} + : Set.Relation.dom (⋃₀ A) = ⋃₀ { Set.Relation.dom R | R ∈ A } := by + ext x + unfold Set.Relation.dom Prod.fst + simp only [ + Set.mem_image, + Set.mem_sUnion, + Prod.exists, + exists_and_right, + exists_eq_right, + Set.mem_setOf_eq, + exists_exists_and_eq_and + ] + apply Iff.intro + · intro ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩ + exact ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩ + · intro ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩ + exact ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩ + +/-- ### Exercise 6.8ii + +Show that for any set `𝓐`: +``` +ran ⋃ A = ⋃ { ran R | R ∈ 𝓐 } +``` +-/ +theorem exercise_6_8_ii {A : Set (Set.Relation α)} + : Set.Relation.ran (⋃₀ A) = ⋃₀ { Set.Relation.ran R | R ∈ A } := by + ext x + unfold Set.Relation.ran Prod.snd + simp only [ + Set.mem_image, + Set.mem_sUnion, + Prod.exists, + exists_eq_right, + Set.mem_setOf_eq, + exists_exists_and_eq_and + ] + apply Iff.intro + · intro ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩ + exact ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩ + · intro ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩ + exact ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩ + +/-- ## Exercise 6.9i + +Discuss the result of replacing the union operation by the intersection +operation in the preceding problem. +``` +dom ⋃ A = ⋃ { dom R | R ∈ 𝓐 } +``` +-/ +theorem exercise_6_9_i {A : Set (Set.Relation α)} + : Set.Relation.dom (⋂₀ A) ⊆ ⋂₀ { Set.Relation.dom R | R ∈ A } := by + show ∀ x, x ∈ Set.Relation.dom (⋂₀ A) → x ∈ ⋂₀ { Set.Relation.dom R | R ∈ A } + unfold Set.Relation.dom Prod.fst + simp only [ + Set.mem_image, + Set.mem_sInter, + Prod.exists, + exists_and_right, + exists_eq_right, + Set.mem_setOf_eq, + forall_exists_index, + and_imp, + forall_apply_eq_imp_iff₂ + ] + intro _ y hy R hR + exact ⟨y, hy R hR⟩ + +/-- ## Exercise 6.9ii + +Discuss the result of replacing the union operation by the intersection +operation in the preceding problem. +``` +ran ⋃ A = ⋃ { ran R | R ∈ 𝓐 } +``` +-/ +theorem exercise_6_9_ii {A : Set (Set.Relation α)} + : Set.Relation.ran (⋂₀ A) ⊆ ⋂₀ { Set.Relation.ran R | R ∈ A } := by + show ∀ x, x ∈ Set.Relation.ran (⋂₀ A) → x ∈ ⋂₀ { Set.Relation.ran R | R ∈ A } + unfold Set.Relation.ran Prod.snd + simp only [ + Set.mem_image, + Set.mem_sInter, + Prod.exists, + exists_and_right, + exists_eq_right, + Set.mem_setOf_eq, + forall_exists_index, + and_imp, + forall_apply_eq_imp_iff₂ + ] + intro _ y hy R hR + exact ⟨y, hy R hR⟩ + end Enderton.Set.Chapter_3 \ No newline at end of file