Enderton. Add various lemmas/begin algebraic proofs.
parent
e7cd189557
commit
2d93d8d768
|
@ -370,14 +370,14 @@ A \textbf{linear ordering} on $A$ (also called a \textbf{total ordering} on $A$)
|
|||
\end{definition}
|
||||
|
||||
\section{\defined{Multiplication}}%
|
||||
\hyperlabel{sec:multiplication}
|
||||
\hyperlabel{ref:multiplication}
|
||||
|
||||
For each $m \in \omega$, there exists (by the
|
||||
\nameref{sub:recursion-theorem-natural-numbers}) a unique
|
||||
\nameref{ref:function} $M_m \colon \omega \rightarrow \omega$ for which
|
||||
\begin{align*}
|
||||
M_m(0) & = 0, \\
|
||||
M_m(n^+) = M_m(n) + m.
|
||||
M_m(n^+) & = M_m(n) + m.
|
||||
\end{align*}
|
||||
\textbf{Multiplication} ($\cdot$) is the \nameref{ref:binary-operation} on
|
||||
$\omega$ such that for any $m$ and $n$ in $\omega$, $$m \cdot n = M_m(n).$$
|
||||
|
@ -2840,11 +2840,11 @@ If not, then under what conditions does equality hold?
|
|||
\subsection{\verified{Lemma 3B}}%
|
||||
\hyperlabel{sub:lemma-3b}
|
||||
|
||||
\begin{theorem}[3B]
|
||||
\begin{lemma}[3B]
|
||||
|
||||
If $x \in C$ and $y \in C$, then $\pair{x, y} \in \powerset{\powerset{C}}$.
|
||||
|
||||
\end{theorem}
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
|
@ -3058,8 +3058,13 @@ If not, then under what conditions does equality hold?
|
|||
\subsection{\verified{Lemma 1}}%
|
||||
\hyperlabel{sub:lemma-1}
|
||||
|
||||
\begin{lemma}[1]
|
||||
|
||||
For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||
|
||||
\end{lemma}
|
||||
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Relation}
|
||||
|
@ -6502,24 +6507,344 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 4K}}
|
||||
\subsection{\pending{Lemma 2}}%
|
||||
\label{sub:lemma-2}
|
||||
|
||||
\begin{lemma}[2]
|
||||
|
||||
For all $n \in \omega$, $A_0(n) = n$.
|
||||
In other words, $$0 + n = n.$$
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $S = \{n \in \omega \mid A_0(n) = n\}$.
|
||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||
Afterwards we show that (iii) our theorem holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:lemma-2-i}
|
||||
|
||||
By definition of \nameref{ref:addition}, $A_0(0) = 0$.
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:lemma-2-ii}
|
||||
|
||||
Suppose $n \in S$.
|
||||
By definition of addition, $A_0(n^+) = A_0(n)^+$.
|
||||
Since $n \in S$, $A_0(n) = n$ which in turn implies that $A_0(n)^+ = n^+$.
|
||||
Thus $n^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:lemma-2-i} and \nameref{par:lemma-2-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||
Thus for all $n \in \omega$, $A_0(n) = n$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Lemma 3}}%
|
||||
\label{sub:lemma-3}
|
||||
|
||||
\begin{lemma}[3]
|
||||
|
||||
For all $m, n \in \omega$, $A_{m^+}(n) = A_m(n^+)$.
|
||||
In other words, $$m^+ + n = m + n^+.$$
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Let $m \in \omega$ and define
|
||||
$$S = \{n \in \omega \mid A_{m^+}(n) = A_m(n^+)\}.$$
|
||||
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
|
||||
Afterwards we show that (iii) our theorem holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\label{par:lemma-3-i}
|
||||
|
||||
By definition of \nameref{ref:addition}, $A_{m^+}(0) = m^+$.
|
||||
Likewise, $$A_m(0^+) = A_m(0)^+ = m^+.$$
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\label{par:lemma-3-ii}
|
||||
|
||||
Suppose $n \in S$.
|
||||
By definition of addition, $A_{m^+}(n^+) = \left[A_{m^+}(n)\right]^+$.
|
||||
Since $n \in S$, $A_{m^+}(n) = A_m(n^+)$ which in turn implies that
|
||||
$$\left[A_{m^+}(n)\right]^+ = \left[A_m(n^+)\right]^+ = A_m(n^{++}).$$
|
||||
Thus $n^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:lemma-3-i} and \nameref{par:lemma-3-ii}, $S$ is inductive.
|
||||
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||
Thus for all $n \in \omega$, $A_{m^+}(n) = A_m(n^+)$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Lemma 4}}%
|
||||
\hyperlabel{sub:lemma-4}
|
||||
|
||||
\begin{lemma}[4]
|
||||
|
||||
For all $n \in \omega$, $M_0(n) = 0$.
|
||||
In other words, $$0 \cdot n = 0.$$
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Define
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:lemma-4-eq1}
|
||||
S = \{n \in \omega \mid M_0(n) = 0\}.
|
||||
\end{equation}
|
||||
We prove that (i) $0 \in S$ and (ii) that if $n \in S$, then $n^+ \in S$.
|
||||
Afterwards we show that (iii) our theorem holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:lemma-4-i}
|
||||
|
||||
By definition of \nameref{ref:multiplication}, $M_0(0) = 0$.
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:lemma-4-ii}
|
||||
|
||||
Suppose $n \in S$.
|
||||
Then, by definition of \nameref{ref:multiplication},
|
||||
\begin{align*}
|
||||
M_0(n^+)
|
||||
& = M_0(n) + 0 \\
|
||||
& = 0 + 0 & \eqref{sub:lemma-4-eq1} \\
|
||||
& = 0. & \textref{ref:addition}
|
||||
\end{align*}
|
||||
Thus $n^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:lemma-4-i} and \nameref{par:lemma-4-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||
Thus for all $n \in \omega$, $M_0(n) = 0$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Lemma 5}}%
|
||||
\hyperlabel{sub:lemma-5}
|
||||
|
||||
\begin{lemma}[5]
|
||||
|
||||
For all $m, n \in \omega$, $M_{m^+}(n) = M_m(n) + n$.
|
||||
In other words, $$m^+ \cdot n = m \cdot n + n.$$
|
||||
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Theorem 4k (1)}}%
|
||||
\label{sub:theorem-4k-1}
|
||||
|
||||
\begin{theorem}[4K.1]
|
||||
|
||||
Associative law for addition.
|
||||
For $m, n, p \in \omega$, $$m + (n + p) = (m + n) + p.$$
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Fix $n, p \in \omega$ and define
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:theorem-4k-1-eq1}
|
||||
S = \{m \in \omega \mid m + (n + p) = (m + n) + p\}.
|
||||
\end{equation}
|
||||
We show that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$.
|
||||
Afterward we show that (iii) the associative law for addition holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:theorem-4k-1-i}
|
||||
|
||||
By definition of \nameref{ref:addition},
|
||||
\begin{align*}
|
||||
0 + (n + p)
|
||||
& = n + p & \textref{sub:lemma-2} \\
|
||||
& = (0 + n) + p. & \textref{sub:lemma-2} \\
|
||||
\end{align*}
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:theorem-4k-1-ii}
|
||||
|
||||
Suppose $m \in S$.
|
||||
By definition of \nameref{ref:addition},
|
||||
\begin{align*}
|
||||
m^+ + (n + p)
|
||||
& = m + (n + p)^+ & \textref{sub:lemma-3} \\
|
||||
& = (m + (n + p))^+ & \textref{sub:theorem-4i} \\
|
||||
& = ((m + n) + p)^+ & \eqref{sub:theorem-4k-1-eq1} \\
|
||||
& = (m + n) + p^+ & \textref{sub:theorem-4i} \\
|
||||
& = (m + n)^+ + p & \textref{sub:lemma-3} \\
|
||||
& = (m + n^+) + p & \textref{sub:theorem-4i} \\
|
||||
& = (m^+ + n) + p. & \textref{sub:lemma-3}
|
||||
\end{align*}
|
||||
Thus $m^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
\hyperlabel{par:theorem-4k-1-iii}
|
||||
|
||||
By \nameref{par:theorem-4k-1-i} and \nameref{par:theorem-4k-1-ii}, $S$ is an
|
||||
\nameref{ref:inductive-set}.
|
||||
By \nameref{sub:theorem-4b}, $S = \omega$.
|
||||
Thus for all $m, n, p \in \omega$, $m + (n + p) = (m + n) + p$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Theorem 4k (2)}}%
|
||||
\label{sub:theorem-4k-2}
|
||||
|
||||
\begin{theorem}[4K.2]
|
||||
|
||||
Commutative law for addition.
|
||||
For $m, n \in \omega$, $$m + n = n + m.$$
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Fix $n \in \omega$ and define
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:theorem-4k-2-eq1}
|
||||
S = \{m \in \omega \mid m + n = n + m\}.
|
||||
\end{equation}
|
||||
We show that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$.
|
||||
Afterward we show that (iii) the commutative law for addition holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:theorem-4k-2-i}
|
||||
|
||||
By definition of \nameref{ref:addition},
|
||||
\begin{align*}
|
||||
0 + n
|
||||
& = n & \textref{sub:lemma-2} \\
|
||||
& = n + 0. \\
|
||||
\end{align*}
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:theorem-4k-2-ii}
|
||||
|
||||
Suppose $m \in S$.
|
||||
By definition of \nameref{ref:addition},
|
||||
\begin{align*}
|
||||
m^+ + n
|
||||
& = m + n^+ & \textref{sub:lemma-3} \\
|
||||
& = (m + n)^+ \\
|
||||
& = (n + m)^+ & \eqref{sub:theorem-4k-2-eq1} \\
|
||||
& = n + m^+.
|
||||
\end{align*}
|
||||
Thus $m^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
|
||||
By \nameref{par:theorem-4k-2-i} and \nameref{par:theorem-4k-2-ii}, $S$
|
||||
is an \nameref{ref:inductive-set}.
|
||||
By \nameref{sub:theorem-4b}, $S = \omega$.
|
||||
Thus for all $m, n \in \omega$, $m + n = n + m$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\pending{Theorem 4k (3)}}%
|
||||
\label{sub:theorem-4k-3}
|
||||
|
||||
\begin{theorem}[4K.3]
|
||||
|
||||
Distributive law.
|
||||
For $m, n, p \in \omega$, $$m \cdot (n + p) = m \cdot n + m \cdot p.$$
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
Fix $n, p \in \omega$ and define
|
||||
\begin{equation}
|
||||
\hyperlabel{sub:theorem-4k-3-eq1}
|
||||
S = \{m \in \omega m \cdot (n + p) = m \cdot n + m \cdot p\}.
|
||||
\end{equation}
|
||||
We show that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$.
|
||||
Afterward we show that (iii) the distributive law holds.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\hyperlabel{par:theorem-4k-3-i}
|
||||
|
||||
By definition of \nameref{ref:multiplication} and \nameref{ref:addition},
|
||||
\begin{align*}
|
||||
0 \cdot (n + p)
|
||||
& = 0 & \textref{sub:lemma-4} \\
|
||||
& = 0 + 0 & \textref{ref:addition} \\
|
||||
& = 0 \cdot n + 0 \cdot p. & \textref{sub:lemma-4}
|
||||
\end{align*}
|
||||
Thus $0 \in S$.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\hyperlabel{par:theorem-4k-3-ii}
|
||||
|
||||
Suppose $m \in S$.
|
||||
By definition of \nameref{ref:multiplication} and \nameref{ref:addition},
|
||||
\begin{align*}
|
||||
m^+ \cdot (n + p)
|
||||
& = m \cdot (n + p) + (n + p) & \textref{sub:lemma-5} \\
|
||||
& = m \cdot (n + p) + n + p & \textref{sub:theorem-4k-1} \\
|
||||
& = m \cdot n + m \cdot p + n + p
|
||||
& \eqref{sub:theorem-4k-3-eq1} \\
|
||||
& = m \cdot n + n + m \cdot p + p & \textref{sub:theorem-4k-2} \\
|
||||
& = m^+ \cdot n + m^+ \cdot p. & \textref{sub:lemma-5}
|
||||
\end{align*}
|
||||
Thus $m^+ \in S$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
\hyperlabel{par:theorem-4k-3-iii}
|
||||
|
||||
By \nameref{par:theorem-4k-3-i} and \nameref{par:theorem-4k-3-ii}, $S$
|
||||
is an \nameref{ref:inductive-set}.
|
||||
By \nameref{sub:theorem-4b}, $S = \omega$.
|
||||
Thus for all $m, n, p \in \omega$,
|
||||
$m \cdot (n + p) = m \cdot n + m \cdot p$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 4k (4)}}%
|
||||
\label{sub:theorem-4k-4}
|
||||
|
||||
\begin{theorem}[4K.4]
|
||||
|
||||
Associative law for multiplication.
|
||||
For $m, n, p \in \omega$, $$m \cdot (n \cdot p) = (m \cdot n) \cdot p.$$
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 4K (5)}}
|
||||
\hyperlabel{sub:theorem-4k}
|
||||
|
||||
\begin{theorem}[4K]
|
||||
\begin{theorem}[4K.5]
|
||||
|
||||
The following identities hold for all natural numbers.
|
||||
\begin{enumerate}
|
||||
\item Associative law for addition
|
||||
$$m + (n + p) = (m + n) + p.$$
|
||||
\item Commutative law for addition
|
||||
$$m + n = n + m.$$
|
||||
\item Distributive law
|
||||
$$m \cdot (n + p) = m \cdot n + m \cdot p.$$
|
||||
\item Associative law for multiplication
|
||||
$$m \cdot (n \cdot p) = (m \cdot n) \cdot p.$$
|
||||
\item Commutative law for multiplication
|
||||
$$m \cdot n = n \cdot m.$$
|
||||
\end{enumerate}
|
||||
Commutative law for multiplication.
|
||||
For $m, n \in \omega$, $$m \cdot n = n \cdot m.$$
|
||||
|
||||
\end{theorem}
|
||||
|
||||
|
|
Loading…
Reference in New Issue