Enderton. Draft theorems/exercises on arithmetic section.
parent
fc3b659613
commit
e7cd189557
|
@ -22,6 +22,28 @@
|
|||
\chapter{Reference}%
|
||||
\hyperlabel{chap:reference}
|
||||
|
||||
\section{\defined{Addition}}%
|
||||
\label{ref:addition}
|
||||
|
||||
For each $m \in \omega$, there exists (by the
|
||||
\nameref{sub:recursion-theorem-natural-numbers}) a unique
|
||||
\nameref{ref:function} $A_m \colon \omega \rightarrow \omega$ for which
|
||||
\begin{align*}
|
||||
A_m(0) & = m, \\
|
||||
A_m(n^+) & = A_m(n)^+ & \text{for } n \text{ in } \omega.
|
||||
\end{align*}
|
||||
\textbf{Addition} ($+$) is the \nameref{ref:binary-operation} on $\omega$ such
|
||||
that for any $m$ and $n$ in $\omega$, $$m + n = A_m(n).$$
|
||||
Thus when written as a \nameref{ref:relation},
|
||||
$$+ = \{\pair{\pair{m, n}, p} \mid
|
||||
m \in \omega \land n \in \omega \land p = A_m(n)\}.$$
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Prelude}{Add.add}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Axiom of Choice, First Form}}%
|
||||
\hyperlabel{ref:axiom-of-choice-1}
|
||||
|
||||
|
@ -46,6 +68,12 @@ For any set $I$ and any function $H$ with domain $I$, if $H(i) \neq \emptyset$
|
|||
|
||||
\end{axiom}
|
||||
|
||||
\section{\defined{Binary Operation}}%
|
||||
\hyperlabel{ref:binary-operation}
|
||||
|
||||
A \textbf{binary operation} on a set $A$ is a \nameref{ref:function} from
|
||||
$A \times A$ into $A$.
|
||||
|
||||
\section{\defined{Cartesian Product}}%
|
||||
\hyperlabel{ref:cartesian-product}
|
||||
|
||||
|
@ -341,6 +369,25 @@ A \textbf{linear ordering} on $A$ (also called a \textbf{total ordering} on $A$)
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Multiplication}}%
|
||||
\hyperlabel{sec:multiplication}
|
||||
|
||||
For each $m \in \omega$, there exists (by the
|
||||
\nameref{sub:recursion-theorem-natural-numbers}) a unique
|
||||
\nameref{ref:function} $M_m \colon \omega \rightarrow \omega$ for which
|
||||
\begin{align*}
|
||||
M_m(0) & = 0, \\
|
||||
M_m(n^+) = M_m(n) + m.
|
||||
\end{align*}
|
||||
\textbf{Multiplication} ($\cdot$) is the \nameref{ref:binary-operation} on
|
||||
$\omega$ such that for any $m$ and $n$ in $\omega$, $$m \cdot n = M_m(n).$$
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Init/Prelude}{Mul.mul}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Natural Number}}%
|
||||
\hyperlabel{ref:natural-number}
|
||||
|
||||
|
@ -6249,7 +6296,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
$\dom{h} = \omega$, and (iv) $h$ is unique.
|
||||
|
||||
\paragraph{(i)}%
|
||||
\label{par:recursion-theorem-natural-numbers-i}
|
||||
\hyperlabel{par:recursion-theorem-natural-numbers-i}
|
||||
|
||||
We prove that $h$ is a function.
|
||||
Consider set
|
||||
|
@ -6257,7 +6304,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
We show (1) that $0 \in S$ and (2) if $n \in S$ then $n^+ \in S$.
|
||||
|
||||
\subparagraph{(1)}%
|
||||
\label{spar:recursion-theorem-natural-numbers-i-1}
|
||||
\hyperlabel{spar:recursion-theorem-natural-numbers-i-1}
|
||||
|
||||
Suppose $0 \in \dom{h}$.
|
||||
By construction, there must exist some $y_1 \in A$ and acceptable function
|
||||
|
@ -6269,7 +6316,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
Therefore $0 \in S$.
|
||||
|
||||
\subparagraph{(2)}%
|
||||
\label{spar:recursion-theorem-natural-numbers-i-2}
|
||||
\hyperlabel{spar:recursion-theorem-natural-numbers-i-2}
|
||||
|
||||
Suppose $n$ and $n^+$ are members of $\dom{h}$.
|
||||
By construction, there must exist some $y_1 \in A$ and acceptable function
|
||||
|
@ -6294,7 +6341,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
In other words, $h$ is a function.
|
||||
|
||||
\paragraph{(ii)}%
|
||||
\label{par:recursion-theorem-natural-numbers-ii}
|
||||
\hyperlabel{par:recursion-theorem-natural-numbers-ii}
|
||||
|
||||
We now prove $h \in H$, i.e. $h$ is an acceptable function.
|
||||
It trivially holds that $\dom{h} \subseteq \omega$ and
|
||||
|
@ -6321,7 +6368,7 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
Hence $h \in H$.
|
||||
|
||||
\paragraph{(iii)}%
|
||||
\label{par:recursion-theorem-natural-numbers-iii}
|
||||
\hyperlabel{par:recursion-theorem-natural-numbers-iii}
|
||||
|
||||
We now prove that $\dom{h} = \omega$.
|
||||
We show that (1) $0 \in \dom{h}$ and (2) if $n \in \dom{h}$ then
|
||||
|
@ -6414,6 +6461,74 @@ Show that $<_L$ is a linear ordering on $A \times B$.
|
|||
|
||||
\end{proof}
|
||||
|
||||
\section{Arithmetic}%
|
||||
\hyperlabel{sec:arithmetic}
|
||||
|
||||
\subsection{\sorry{Theorem 4I}}
|
||||
\hyperlabel{sub:theorem-4i}
|
||||
|
||||
\begin{theorem}[4I]
|
||||
|
||||
For natural numbers $m$ and $n$,
|
||||
\begin{align*}
|
||||
m + 0 & = m, \\
|
||||
m + n^+ & = (m + n)^+.
|
||||
\end{align*}
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 4J}}
|
||||
\hyperlabel{sub:theorem-4j}
|
||||
|
||||
\begin{theorem}[4J]
|
||||
|
||||
For natural numbers $m$ and $n$,
|
||||
\begin{align*}
|
||||
m \cdot 0 & = 0, \\
|
||||
m \cdot n^+ & = m \cdot n + m.
|
||||
\end{align*}
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 4K}}
|
||||
\hyperlabel{sub:theorem-4k}
|
||||
|
||||
\begin{theorem}[4K]
|
||||
|
||||
The following identities hold for all natural numbers.
|
||||
\begin{enumerate}
|
||||
\item Associative law for addition
|
||||
$$m + (n + p) = (m + n) + p.$$
|
||||
\item Commutative law for addition
|
||||
$$m + n = n + m.$$
|
||||
\item Distributive law
|
||||
$$m \cdot (n + p) = m \cdot n + m \cdot p.$$
|
||||
\item Associative law for multiplication
|
||||
$$m \cdot (n \cdot p) = (m \cdot n) \cdot p.$$
|
||||
\item Commutative law for multiplication
|
||||
$$m \cdot n = n \cdot m.$$
|
||||
\end{enumerate}
|
||||
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\section{Exercises 4}%
|
||||
\hyperlabel{sec:exercises-4}
|
||||
|
||||
|
@ -6781,4 +6896,62 @@ Formulate an analogue to Exercise 9 for a function
|
|||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.13}}%
|
||||
\hyperlabel{sub:exercise-4.13}
|
||||
|
||||
Let $m$ and $n$ be natural numbers such that $m \cdot n = 0$.
|
||||
Show that either $m = 0$ or $n = 0$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.14}}%
|
||||
\hyperlabel{sub:exercise-4.14}
|
||||
|
||||
Call a natural number \textit{even} if it has the form $2 \cdot m$ for some $m$.
|
||||
Call it \textit{odd} if it has the form $(2 \cdot p) + 1$ for some $p$.
|
||||
Show that each natural number is either even or odd, but never both.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.15}}%
|
||||
\hyperlabel{sub:exercise-4.15}
|
||||
|
||||
Complete the proof of part (1) of \nameref{sub:theorem-4k}.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.16}}%
|
||||
\hyperlabel{sub:exercise-4.16}
|
||||
|
||||
Complete the proof of part (5) of \nameref{sub:theorem-4k}.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 4.17}}%
|
||||
\hyperlabel{sub:exercise-4.17}
|
||||
|
||||
Prove that $m^{n+p} = m^n \cdot m^p$.
|
||||
|
||||
\begin{proof}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in New Issue