Enderton. Add various lemmas/begin algebraic proofs.

finite-set-exercises
Joshua Potter 2023-08-02 11:02:33 -06:00
parent e7cd189557
commit 2d93d8d768
1 changed files with 345 additions and 20 deletions

View File

@ -370,14 +370,14 @@ A \textbf{linear ordering} on $A$ (also called a \textbf{total ordering} on $A$)
\end{definition}
\section{\defined{Multiplication}}%
\hyperlabel{sec:multiplication}
\hyperlabel{ref:multiplication}
For each $m \in \omega$, there exists (by the
\nameref{sub:recursion-theorem-natural-numbers}) a unique
\nameref{ref:function} $M_m \colon \omega \rightarrow \omega$ for which
\begin{align*}
M_m(0) & = 0, \\
M_m(n^+) = M_m(n) + m.
M_m(n^+) & = M_m(n) + m.
\end{align*}
\textbf{Multiplication} ($\cdot$) is the \nameref{ref:binary-operation} on
$\omega$ such that for any $m$ and $n$ in $\omega$, $$m \cdot n = M_m(n).$$
@ -2840,11 +2840,11 @@ If not, then under what conditions does equality hold?
\subsection{\verified{Lemma 3B}}%
\hyperlabel{sub:lemma-3b}
\begin{theorem}[3B]
\begin{lemma}[3B]
If $x \in C$ and $y \in C$, then $\pair{x, y} \in \powerset{\powerset{C}}$.
\end{theorem}
\end{lemma}
\begin{proof}
@ -3058,7 +3058,12 @@ If not, then under what conditions does equality hold?
\subsection{\verified{Lemma 1}}%
\hyperlabel{sub:lemma-1}
For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\begin{lemma}[1]
For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\end{lemma}
\begin{proof}
@ -6502,24 +6507,344 @@ Show that $<_L$ is a linear ordering on $A \times B$.
\end{proof}
\subsection{\sorry{Theorem 4K}}
\subsection{\pending{Lemma 2}}%
\label{sub:lemma-2}
\begin{lemma}[2]
For all $n \in \omega$, $A_0(n) = n$.
In other words, $$0 + n = n.$$
\end{lemma}
\begin{proof}
Let $S = \{n \in \omega \mid A_0(n) = n\}$.
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
Afterwards we show that (iii) our theorem holds.
\paragraph{(i)}%
\hyperlabel{par:lemma-2-i}
By definition of \nameref{ref:addition}, $A_0(0) = 0$.
Thus $0 \in S$.
\paragraph{(ii)}%
\hyperlabel{par:lemma-2-ii}
Suppose $n \in S$.
By definition of addition, $A_0(n^+) = A_0(n)^+$.
Since $n \in S$, $A_0(n) = n$ which in turn implies that $A_0(n)^+ = n^+$.
Thus $n^+ \in S$.
\paragraph{(iii)}%
By \nameref{par:lemma-2-i} and \nameref{par:lemma-2-ii}, $S$ is an
\nameref{ref:inductive-set}.
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
Thus for all $n \in \omega$, $A_0(n) = n$.
\end{proof}
\subsection{\pending{Lemma 3}}%
\label{sub:lemma-3}
\begin{lemma}[3]
For all $m, n \in \omega$, $A_{m^+}(n) = A_m(n^+)$.
In other words, $$m^+ + n = m + n^+.$$
\end{lemma}
\begin{proof}
Let $m \in \omega$ and define
$$S = \{n \in \omega \mid A_{m^+}(n) = A_m(n^+)\}.$$
We prove that (i) $0 \in S$ and (ii) if $n \in S$ then $n^+ \in S$.
Afterwards we show that (iii) our theorem holds.
\paragraph{(i)}%
\label{par:lemma-3-i}
By definition of \nameref{ref:addition}, $A_{m^+}(0) = m^+$.
Likewise, $$A_m(0^+) = A_m(0)^+ = m^+.$$
Thus $0 \in S$.
\paragraph{(ii)}%
\label{par:lemma-3-ii}
Suppose $n \in S$.
By definition of addition, $A_{m^+}(n^+) = \left[A_{m^+}(n)\right]^+$.
Since $n \in S$, $A_{m^+}(n) = A_m(n^+)$ which in turn implies that
$$\left[A_{m^+}(n)\right]^+ = \left[A_m(n^+)\right]^+ = A_m(n^{++}).$$
Thus $n^+ \in S$.
\paragraph{(iii)}%
By \nameref{par:lemma-3-i} and \nameref{par:lemma-3-ii}, $S$ is inductive.
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
Thus for all $n \in \omega$, $A_{m^+}(n) = A_m(n^+)$.
\end{proof}
\subsection{\pending{Lemma 4}}%
\hyperlabel{sub:lemma-4}
\begin{lemma}[4]
For all $n \in \omega$, $M_0(n) = 0$.
In other words, $$0 \cdot n = 0.$$
\end{lemma}
\begin{proof}
Define
\begin{equation}
\hyperlabel{sub:lemma-4-eq1}
S = \{n \in \omega \mid M_0(n) = 0\}.
\end{equation}
We prove that (i) $0 \in S$ and (ii) that if $n \in S$, then $n^+ \in S$.
Afterwards we show that (iii) our theorem holds.
\paragraph{(i)}%
\hyperlabel{par:lemma-4-i}
By definition of \nameref{ref:multiplication}, $M_0(0) = 0$.
Thus $0 \in S$.
\paragraph{(ii)}%
\hyperlabel{par:lemma-4-ii}
Suppose $n \in S$.
Then, by definition of \nameref{ref:multiplication},
\begin{align*}
M_0(n^+)
& = M_0(n) + 0 \\
& = 0 + 0 & \eqref{sub:lemma-4-eq1} \\
& = 0. & \textref{ref:addition}
\end{align*}
Thus $n^+ \in S$.
\paragraph{(iii)}%
By \nameref{par:lemma-4-i} and \nameref{par:lemma-4-ii}, $S$ is an
\nameref{ref:inductive-set}.
Hence \nameref{sub:theorem-4b} implies $S = \omega$.
Thus for all $n \in \omega$, $M_0(n) = 0$.
\end{proof}
\subsection{\sorry{Lemma 5}}%
\hyperlabel{sub:lemma-5}
\begin{lemma}[5]
For all $m, n \in \omega$, $M_{m^+}(n) = M_m(n) + n$.
In other words, $$m^+ \cdot n = m \cdot n + n.$$
\end{lemma}
\begin{proof}
TODO
\end{proof}
\subsection{\pending{Theorem 4k (1)}}%
\label{sub:theorem-4k-1}
\begin{theorem}[4K.1]
Associative law for addition.
For $m, n, p \in \omega$, $$m + (n + p) = (m + n) + p.$$
\end{theorem}
\begin{proof}
Fix $n, p \in \omega$ and define
\begin{equation}
\hyperlabel{sub:theorem-4k-1-eq1}
S = \{m \in \omega \mid m + (n + p) = (m + n) + p\}.
\end{equation}
We show that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$.
Afterward we show that (iii) the associative law for addition holds.
\paragraph{(i)}%
\hyperlabel{par:theorem-4k-1-i}
By definition of \nameref{ref:addition},
\begin{align*}
0 + (n + p)
& = n + p & \textref{sub:lemma-2} \\
& = (0 + n) + p. & \textref{sub:lemma-2} \\
\end{align*}
Thus $0 \in S$.
\paragraph{(ii)}%
\hyperlabel{par:theorem-4k-1-ii}
Suppose $m \in S$.
By definition of \nameref{ref:addition},
\begin{align*}
m^+ + (n + p)
& = m + (n + p)^+ & \textref{sub:lemma-3} \\
& = (m + (n + p))^+ & \textref{sub:theorem-4i} \\
& = ((m + n) + p)^+ & \eqref{sub:theorem-4k-1-eq1} \\
& = (m + n) + p^+ & \textref{sub:theorem-4i} \\
& = (m + n)^+ + p & \textref{sub:lemma-3} \\
& = (m + n^+) + p & \textref{sub:theorem-4i} \\
& = (m^+ + n) + p. & \textref{sub:lemma-3}
\end{align*}
Thus $m^+ \in S$.
\paragraph{(iii)}%
\hyperlabel{par:theorem-4k-1-iii}
By \nameref{par:theorem-4k-1-i} and \nameref{par:theorem-4k-1-ii}, $S$ is an
\nameref{ref:inductive-set}.
By \nameref{sub:theorem-4b}, $S = \omega$.
Thus for all $m, n, p \in \omega$, $m + (n + p) = (m + n) + p$.
\end{proof}
\subsection{\pending{Theorem 4k (2)}}%
\label{sub:theorem-4k-2}
\begin{theorem}[4K.2]
Commutative law for addition.
For $m, n \in \omega$, $$m + n = n + m.$$
\end{theorem}
\begin{proof}
Fix $n \in \omega$ and define
\begin{equation}
\hyperlabel{sub:theorem-4k-2-eq1}
S = \{m \in \omega \mid m + n = n + m\}.
\end{equation}
We show that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$.
Afterward we show that (iii) the commutative law for addition holds.
\paragraph{(i)}%
\hyperlabel{par:theorem-4k-2-i}
By definition of \nameref{ref:addition},
\begin{align*}
0 + n
& = n & \textref{sub:lemma-2} \\
& = n + 0. \\
\end{align*}
Thus $0 \in S$.
\paragraph{(ii)}%
\hyperlabel{par:theorem-4k-2-ii}
Suppose $m \in S$.
By definition of \nameref{ref:addition},
\begin{align*}
m^+ + n
& = m + n^+ & \textref{sub:lemma-3} \\
& = (m + n)^+ \\
& = (n + m)^+ & \eqref{sub:theorem-4k-2-eq1} \\
& = n + m^+.
\end{align*}
Thus $m^+ \in S$.
\paragraph{(iii)}%
By \nameref{par:theorem-4k-2-i} and \nameref{par:theorem-4k-2-ii}, $S$
is an \nameref{ref:inductive-set}.
By \nameref{sub:theorem-4b}, $S = \omega$.
Thus for all $m, n \in \omega$, $m + n = n + m$.
\end{proof}
\subsection{\pending{Theorem 4k (3)}}%
\label{sub:theorem-4k-3}
\begin{theorem}[4K.3]
Distributive law.
For $m, n, p \in \omega$, $$m \cdot (n + p) = m \cdot n + m \cdot p.$$
\end{theorem}
\begin{proof}
Fix $n, p \in \omega$ and define
\begin{equation}
\hyperlabel{sub:theorem-4k-3-eq1}
S = \{m \in \omega m \cdot (n + p) = m \cdot n + m \cdot p\}.
\end{equation}
We show that (i) $0 \in S$ and (ii) if $m \in S$ then $m^+ \in S$.
Afterward we show that (iii) the distributive law holds.
\paragraph{(i)}%
\hyperlabel{par:theorem-4k-3-i}
By definition of \nameref{ref:multiplication} and \nameref{ref:addition},
\begin{align*}
0 \cdot (n + p)
& = 0 & \textref{sub:lemma-4} \\
& = 0 + 0 & \textref{ref:addition} \\
& = 0 \cdot n + 0 \cdot p. & \textref{sub:lemma-4}
\end{align*}
Thus $0 \in S$.
\paragraph{(ii)}%
\hyperlabel{par:theorem-4k-3-ii}
Suppose $m \in S$.
By definition of \nameref{ref:multiplication} and \nameref{ref:addition},
\begin{align*}
m^+ \cdot (n + p)
& = m \cdot (n + p) + (n + p) & \textref{sub:lemma-5} \\
& = m \cdot (n + p) + n + p & \textref{sub:theorem-4k-1} \\
& = m \cdot n + m \cdot p + n + p
& \eqref{sub:theorem-4k-3-eq1} \\
& = m \cdot n + n + m \cdot p + p & \textref{sub:theorem-4k-2} \\
& = m^+ \cdot n + m^+ \cdot p. & \textref{sub:lemma-5}
\end{align*}
Thus $m^+ \in S$.
\paragraph{(iii)}%
\hyperlabel{par:theorem-4k-3-iii}
By \nameref{par:theorem-4k-3-i} and \nameref{par:theorem-4k-3-ii}, $S$
is an \nameref{ref:inductive-set}.
By \nameref{sub:theorem-4b}, $S = \omega$.
Thus for all $m, n, p \in \omega$,
$m \cdot (n + p) = m \cdot n + m \cdot p$.
\end{proof}
\subsection{\sorry{Theorem 4k (4)}}%
\label{sub:theorem-4k-4}
\begin{theorem}[4K.4]
Associative law for multiplication.
For $m, n, p \in \omega$, $$m \cdot (n \cdot p) = (m \cdot n) \cdot p.$$
\end{theorem}
\begin{proof}
TODO
\end{proof}
\subsection{\sorry{Theorem 4K (5)}}
\hyperlabel{sub:theorem-4k}
\begin{theorem}[4K]
\begin{theorem}[4K.5]
The following identities hold for all natural numbers.
\begin{enumerate}
\item Associative law for addition
$$m + (n + p) = (m + n) + p.$$
\item Commutative law for addition
$$m + n = n + m.$$
\item Distributive law
$$m \cdot (n + p) = m \cdot n + m \cdot p.$$
\item Associative law for multiplication
$$m \cdot (n \cdot p) = (m \cdot n) \cdot p.$$
\item Commutative law for multiplication
$$m \cdot n = n \cdot m.$$
\end{enumerate}
Commutative law for multiplication.
For $m, n \in \omega$, $$m \cdot n = n \cdot m.$$
\end{theorem}