Enderton (set). Equinumerosity theorems.
parent
b9b542f0ee
commit
2c1547aee9
|
@ -127,8 +127,10 @@
|
|||
\section{\defined{Equinumerous}}%
|
||||
\hyperlabel{ref:equinumerous}
|
||||
|
||||
A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
||||
if and only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$.
|
||||
A set $A$ is \textbf{equinumerous} to a set $B$ (written
|
||||
$\equinumerous{A}{B}$) if and only if there is a one-to-one
|
||||
\nameref{ref:function} from $A$ onto $B$.
|
||||
In other words, there exists a one-to-one correspondence between $A$ and $B$.
|
||||
|
||||
\lean*{Mathlib/Init/Function}
|
||||
{Function.Bijective}
|
||||
|
@ -149,8 +151,9 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
\hyperlabel{ref:equivalence-relation}
|
||||
|
||||
Relation $R$ is an \textbf{equivalence relation} on set $A$ if and only if
|
||||
$R$ is a binary \nameref{ref:relation} on $A$ that is \nameref{ref:reflexive}
|
||||
on $A$, \nameref{ref:symmetric}, and \nameref{ref:transitive}.
|
||||
$R$ is a binary \nameref{ref:relation} on $A$ that is
|
||||
\nameref{ref:reflexive} on $A$, \nameref{ref:symmetric}, and
|
||||
\nameref{ref:transitive}.
|
||||
|
||||
\code*{Bookshelf/Enderton/Set/Relation}
|
||||
{Set.Relation.isEquivalence}
|
||||
|
@ -215,6 +218,9 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
only one $x$ such that $xFy$.
|
||||
One-to-one functions are sometimes called \textbf{injections}.
|
||||
|
||||
A one-to-one function from $A$ onto $B$ is a
|
||||
\textbf{one-to-one correspondence} between $A$ and $B$.
|
||||
|
||||
\code*{Bookshelf/Enderton/Set/Relation}
|
||||
{Set.Relation.isSingleValued}
|
||||
|
||||
|
@ -2879,7 +2885,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
\hyperlabel{sub:one-to-one-inverse}
|
||||
|
||||
\begin{lemma}
|
||||
For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
|
||||
For any one-to-one function $F$, $F^{-1}$ is also a one-to-one function.
|
||||
\end{lemma}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Relation}
|
||||
|
@ -3008,7 +3014,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
|
||||
\begin{lemma}
|
||||
Let $F$ and $G$ be one-to-one functions.
|
||||
Then $F \circ G$ is one-to-one as well.
|
||||
Then $F \circ G$ is also a one-to-one function.
|
||||
\end{lemma}
|
||||
|
||||
\code{Bookshelf/Enderton/Set/Relation}
|
||||
|
@ -3023,21 +3029,15 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}.
|
||||
\end{equation}
|
||||
By \nameref{sub:theorem-3h}, $F \circ G$ is a function.
|
||||
All that remains is proving $F \circ G$ is single-rooted, i.e. for each
|
||||
$y \in \ran{F \circ G}$, there is only one $x$ such that
|
||||
$\tuple{x, y} \in F \circ G$.
|
||||
|
||||
To that end let $y \in \ran{(F \circ G)}$.
|
||||
Then there exists some $x_1 \in \dom{(F \circ G)}$ such that
|
||||
$\tuple{x_1, y} \in F \circ G$.
|
||||
Suppose there also exists some $x_2 \in \dom{(F \circ G)}$ such that
|
||||
$\tuple{x_2, y} \in F \circ G$.
|
||||
By \eqref{sub:one-to-one-composition-eq1}, there exists a $t_1$ such that
|
||||
All that remains is proving $F \circ G$ is one-to-one.
|
||||
Let $(F \circ G)(x_1) = (F \circ G)(x_2) = y$.
|
||||
By \eqref{sub:one-to-one-composition-eq1}, there exists some $t_1$ such that
|
||||
$x_1Gt_1$ and $t_1Fy$.
|
||||
Likewise, there exists some $t_2$ such that $x_2Gt_2$ and $t_2Fy$.
|
||||
But $F$ is one-to-one meaning $t_1 = t_2$.
|
||||
Similarly, $G$ is one-to-one meaning $x_1 = x_2$.
|
||||
Hence $F \circ G$ is single-valued.
|
||||
Since $F$ is one-to-one, it follows $t_1 = t_2$.
|
||||
Then, since $G$ is also one-to-one, it follows $x_1 = x_2$.
|
||||
Hence $F \circ G$ is one-to-one.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\verified{Theorem 3I}}%
|
||||
|
@ -8442,7 +8442,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
\section{Equinumerosity}%
|
||||
\hyperlabel{sec:equinumerosity}
|
||||
|
||||
\subsection{\pending{Theorem 6A}}%
|
||||
\subsection{\verified{Theorem 6A}}%
|
||||
\hyperlabel{sub:theorem-6a}
|
||||
|
||||
\begin{theorem}[6A]
|
||||
|
@ -8470,23 +8470,43 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
|
||||
\paragraph{(a)}%
|
||||
|
||||
Consider function $I_A \colon A \rightarrow A$ given by $I_A(x) = x$.
|
||||
This function is trivially a bijection between $A$ and $A$.
|
||||
Consider \nameref{ref:function} $I_A \colon A \rightarrow A$ given by
|
||||
$I_A(x) = x$.
|
||||
$I_A$ is trivially a one-to-one correspondence between $A$ and $A$.
|
||||
Thus $A$ is \nameref{ref:equinumerous} to $A$.
|
||||
|
||||
\paragraph{(b)}%
|
||||
|
||||
Suppose $\equinumerous{A}{B}$.
|
||||
Then there exists a one-to-one function $f$ from $A$ onto $B$.
|
||||
TODO
|
||||
Then there exists a one-to-one correspondence $F$ between $A$ and $B$.
|
||||
Consider now \nameref{ref:inverse} $$F^{-1} = \{\tuple{u, v} \mid vFu\}.$$
|
||||
By \nameref{sub:one-to-one-inverse}, $F^{-1}$ is a one-to-one function.
|
||||
For all $y \in A$, $\tuple{y, F(y)} \in F$.
|
||||
Then $\tuple{F(y), y} \in F^{-1}$ meaning $F^{-1}$ is onto $A$.
|
||||
Hence $F^{-1}$ is a one-to-one correspondence between $B$ and $A$, i.e.
|
||||
$\equinumerous{B}{A}$.
|
||||
|
||||
\paragraph{(c)}%
|
||||
|
||||
TODO
|
||||
Suppose $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$.
|
||||
Then there exists a one-to-one correspondence $G$ between $A$ and $B$ and
|
||||
a one-to-one correspondence $F$ between $B$ and $C$.
|
||||
By \nameref{sub:one-to-one-composition}, $F \circ G$ is a one-to-one
|
||||
function.
|
||||
Thus we're left with proving $F \circ G$ is onto $C$.
|
||||
|
||||
Let $y \in C$.
|
||||
Since $F$ is onto $C$, there exists some $t \in B$ such that $F(t) = y$.
|
||||
Likewise, since $G$ is onto $B$, there exists some $x \in A$ such that
|
||||
$G(x) = t$.
|
||||
Then $F(G(x)) = y$.
|
||||
Thus $\ran{(F \circ G)} = C$ meaning $F \circ G$ is onto $C$.
|
||||
Hence $F \circ G$ is a one-to-one correspondence function between $A$ and
|
||||
$C$, i.e. $\equinumerous{A}{C}$.
|
||||
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Theorem 6B}}%
|
||||
\subsection{\unverified{Theorem 6B}}%
|
||||
\hyperlabel{sub:theorem-6b}
|
||||
|
||||
\begin{theorem}[6B]
|
||||
|
@ -8494,7 +8514,16 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
Let $A$ be an arbitrary set and $f \colon A \rightarrow \powerset{A}$.
|
||||
Define $\phi = \{a \in A \mid a \not\in f(a)\}$.
|
||||
Clearly $\phi \in \powerset{A}$.
|
||||
Furthermore, for all $a \in A$, $\phi \neq f(a)$ since $a \in \phi$ if and
|
||||
only if $a \not\in f(a)$.
|
||||
Thus $f$ cannot be onto $\powerset{A}$.
|
||||
Since $f$ was arbitrarily chosen, there exists no one-to-one correspondence
|
||||
between $A$ and $\powerset{A}$.
|
||||
Since $A$ was arbitrarily chosen, there is no set equinumerous to its
|
||||
powerset.
|
||||
\end{proof}
|
||||
|
||||
\section{Finite Sets}%
|
||||
|
@ -8619,13 +8648,13 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
|
|||
TODO
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 6.5}}%
|
||||
\subsection{\verified{Exercise 6.5}}%
|
||||
\hyperlabel{sub:exercise-6-5}
|
||||
|
||||
Prove \nameref{sub:theorem-6a}.
|
||||
|
||||
\begin{proof}
|
||||
TODO
|
||||
Refer to \nameref{sub:theorem-6a}.
|
||||
\end{proof}
|
||||
|
||||
\subsection{\sorry{Exercise 6.6}}%
|
||||
|
|
|
@ -18,22 +18,22 @@ For any sets `A`, `B`, and `C`,
|
|||
-/
|
||||
|
||||
theorem theorem_6a_a (A : Set α)
|
||||
: ∃ f, Set.BijOn f A A := by
|
||||
: ∃ F, Set.BijOn F A A := by
|
||||
refine ⟨fun x => x, ?_⟩
|
||||
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
|
||||
simp only [imp_self, implies_true, Set.image_id', true_and]
|
||||
exact Eq.subset rfl
|
||||
|
||||
theorem theorem_6a_b [Nonempty α] (A : Set α) (B : Set β)
|
||||
(f : α → β) (hf : Set.BijOn f A B)
|
||||
: ∃ g, Set.BijOn g B A := by
|
||||
refine ⟨Function.invFunOn f A, ?_⟩
|
||||
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hf).mpr hf
|
||||
(F : α → β) (hF : Set.BijOn F A B)
|
||||
: ∃ G, Set.BijOn G B A := by
|
||||
refine ⟨Function.invFunOn F A, ?_⟩
|
||||
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hF).mpr hF
|
||||
|
||||
theorem theorem_6a_c (A : Set α) (B : Set β) (C : Set γ)
|
||||
(f : α → β) (hf : Set.BijOn f A B)
|
||||
(g : β → γ) (hg : Set.BijOn g B C)
|
||||
: ∃ h, Set.BijOn h A C := by
|
||||
exact ⟨g ∘ f, Set.BijOn.comp hg hf⟩
|
||||
(F : α → β) (hF : Set.BijOn F A B)
|
||||
(G : β → γ) (hG : Set.BijOn G B C)
|
||||
: ∃ H, Set.BijOn H A C := by
|
||||
exact ⟨G ∘ F, Set.BijOn.comp hG hF⟩
|
||||
|
||||
end Enderton.Set.Chapter_6
|
||||
|
|
Loading…
Reference in New Issue