Enderton (set). Equinumerosity theorems.

finite-set-exercises
Joshua Potter 2023-08-17 12:56:39 -06:00
parent b9b542f0ee
commit 2c1547aee9
2 changed files with 66 additions and 37 deletions

View File

@ -127,8 +127,10 @@
\section{\defined{Equinumerous}}% \section{\defined{Equinumerous}}%
\hyperlabel{ref:equinumerous} \hyperlabel{ref:equinumerous}
A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$) A set $A$ is \textbf{equinumerous} to a set $B$ (written
if and only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$. $\equinumerous{A}{B}$) if and only if there is a one-to-one
\nameref{ref:function} from $A$ onto $B$.
In other words, there exists a one-to-one correspondence between $A$ and $B$.
\lean*{Mathlib/Init/Function} \lean*{Mathlib/Init/Function}
{Function.Bijective} {Function.Bijective}
@ -149,8 +151,9 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\hyperlabel{ref:equivalence-relation} \hyperlabel{ref:equivalence-relation}
Relation $R$ is an \textbf{equivalence relation} on set $A$ if and only if Relation $R$ is an \textbf{equivalence relation} on set $A$ if and only if
$R$ is a binary \nameref{ref:relation} on $A$ that is \nameref{ref:reflexive} $R$ is a binary \nameref{ref:relation} on $A$ that is
on $A$, \nameref{ref:symmetric}, and \nameref{ref:transitive}. \nameref{ref:reflexive} on $A$, \nameref{ref:symmetric}, and
\nameref{ref:transitive}.
\code*{Bookshelf/Enderton/Set/Relation} \code*{Bookshelf/Enderton/Set/Relation}
{Set.Relation.isEquivalence} {Set.Relation.isEquivalence}
@ -215,6 +218,9 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
only one $x$ such that $xFy$. only one $x$ such that $xFy$.
One-to-one functions are sometimes called \textbf{injections}. One-to-one functions are sometimes called \textbf{injections}.
A one-to-one function from $A$ onto $B$ is a
\textbf{one-to-one correspondence} between $A$ and $B$.
\code*{Bookshelf/Enderton/Set/Relation} \code*{Bookshelf/Enderton/Set/Relation}
{Set.Relation.isSingleValued} {Set.Relation.isSingleValued}
@ -2879,7 +2885,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\hyperlabel{sub:one-to-one-inverse} \hyperlabel{sub:one-to-one-inverse}
\begin{lemma} \begin{lemma}
For any one-to-one function $F$, $F^{-1}$ is also one-to-one. For any one-to-one function $F$, $F^{-1}$ is also a one-to-one function.
\end{lemma} \end{lemma}
\code{Bookshelf/Enderton/Set/Relation} \code{Bookshelf/Enderton/Set/Relation}
@ -3008,7 +3014,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\begin{lemma} \begin{lemma}
Let $F$ and $G$ be one-to-one functions. Let $F$ and $G$ be one-to-one functions.
Then $F \circ G$ is one-to-one as well. Then $F \circ G$ is also a one-to-one function.
\end{lemma} \end{lemma}
\code{Bookshelf/Enderton/Set/Relation} \code{Bookshelf/Enderton/Set/Relation}
@ -3023,21 +3029,15 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}. F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}.
\end{equation} \end{equation}
By \nameref{sub:theorem-3h}, $F \circ G$ is a function. By \nameref{sub:theorem-3h}, $F \circ G$ is a function.
All that remains is proving $F \circ G$ is single-rooted, i.e. for each
$y \in \ran{F \circ G}$, there is only one $x$ such that
$\tuple{x, y} \in F \circ G$.
To that end let $y \in \ran{(F \circ G)}$. All that remains is proving $F \circ G$ is one-to-one.
Then there exists some $x_1 \in \dom{(F \circ G)}$ such that Let $(F \circ G)(x_1) = (F \circ G)(x_2) = y$.
$\tuple{x_1, y} \in F \circ G$. By \eqref{sub:one-to-one-composition-eq1}, there exists some $t_1$ such that
Suppose there also exists some $x_2 \in \dom{(F \circ G)}$ such that
$\tuple{x_2, y} \in F \circ G$.
By \eqref{sub:one-to-one-composition-eq1}, there exists a $t_1$ such that
$x_1Gt_1$ and $t_1Fy$. $x_1Gt_1$ and $t_1Fy$.
Likewise, there exists some $t_2$ such that $x_2Gt_2$ and $t_2Fy$. Likewise, there exists some $t_2$ such that $x_2Gt_2$ and $t_2Fy$.
But $F$ is one-to-one meaning $t_1 = t_2$. Since $F$ is one-to-one, it follows $t_1 = t_2$.
Similarly, $G$ is one-to-one meaning $x_1 = x_2$. Then, since $G$ is also one-to-one, it follows $x_1 = x_2$.
Hence $F \circ G$ is single-valued. Hence $F \circ G$ is one-to-one.
\end{proof} \end{proof}
\subsection{\verified{Theorem 3I}}% \subsection{\verified{Theorem 3I}}%
@ -8442,7 +8442,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\section{Equinumerosity}% \section{Equinumerosity}%
\hyperlabel{sec:equinumerosity} \hyperlabel{sec:equinumerosity}
\subsection{\pending{Theorem 6A}}% \subsection{\verified{Theorem 6A}}%
\hyperlabel{sub:theorem-6a} \hyperlabel{sub:theorem-6a}
\begin{theorem}[6A] \begin{theorem}[6A]
@ -8470,23 +8470,43 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\paragraph{(a)}% \paragraph{(a)}%
Consider function $I_A \colon A \rightarrow A$ given by $I_A(x) = x$. Consider \nameref{ref:function} $I_A \colon A \rightarrow A$ given by
This function is trivially a bijection between $A$ and $A$. $I_A(x) = x$.
$I_A$ is trivially a one-to-one correspondence between $A$ and $A$.
Thus $A$ is \nameref{ref:equinumerous} to $A$. Thus $A$ is \nameref{ref:equinumerous} to $A$.
\paragraph{(b)}% \paragraph{(b)}%
Suppose $\equinumerous{A}{B}$. Suppose $\equinumerous{A}{B}$.
Then there exists a one-to-one function $f$ from $A$ onto $B$. Then there exists a one-to-one correspondence $F$ between $A$ and $B$.
TODO Consider now \nameref{ref:inverse} $$F^{-1} = \{\tuple{u, v} \mid vFu\}.$$
By \nameref{sub:one-to-one-inverse}, $F^{-1}$ is a one-to-one function.
For all $y \in A$, $\tuple{y, F(y)} \in F$.
Then $\tuple{F(y), y} \in F^{-1}$ meaning $F^{-1}$ is onto $A$.
Hence $F^{-1}$ is a one-to-one correspondence between $B$ and $A$, i.e.
$\equinumerous{B}{A}$.
\paragraph{(c)}% \paragraph{(c)}%
TODO Suppose $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$.
Then there exists a one-to-one correspondence $G$ between $A$ and $B$ and
a one-to-one correspondence $F$ between $B$ and $C$.
By \nameref{sub:one-to-one-composition}, $F \circ G$ is a one-to-one
function.
Thus we're left with proving $F \circ G$ is onto $C$.
Let $y \in C$.
Since $F$ is onto $C$, there exists some $t \in B$ such that $F(t) = y$.
Likewise, since $G$ is onto $B$, there exists some $x \in A$ such that
$G(x) = t$.
Then $F(G(x)) = y$.
Thus $\ran{(F \circ G)} = C$ meaning $F \circ G$ is onto $C$.
Hence $F \circ G$ is a one-to-one correspondence function between $A$ and
$C$, i.e. $\equinumerous{A}{C}$.
\end{proof} \end{proof}
\subsection{\sorry{Theorem 6B}}% \subsection{\unverified{Theorem 6B}}%
\hyperlabel{sub:theorem-6b} \hyperlabel{sub:theorem-6b}
\begin{theorem}[6B] \begin{theorem}[6B]
@ -8494,7 +8514,16 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
TODO Let $A$ be an arbitrary set and $f \colon A \rightarrow \powerset{A}$.
Define $\phi = \{a \in A \mid a \not\in f(a)\}$.
Clearly $\phi \in \powerset{A}$.
Furthermore, for all $a \in A$, $\phi \neq f(a)$ since $a \in \phi$ if and
only if $a \not\in f(a)$.
Thus $f$ cannot be onto $\powerset{A}$.
Since $f$ was arbitrarily chosen, there exists no one-to-one correspondence
between $A$ and $\powerset{A}$.
Since $A$ was arbitrarily chosen, there is no set equinumerous to its
powerset.
\end{proof} \end{proof}
\section{Finite Sets}% \section{Finite Sets}%
@ -8619,13 +8648,13 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
TODO TODO
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.5}}% \subsection{\verified{Exercise 6.5}}%
\hyperlabel{sub:exercise-6-5} \hyperlabel{sub:exercise-6-5}
Prove \nameref{sub:theorem-6a}. Prove \nameref{sub:theorem-6a}.
\begin{proof} \begin{proof}
TODO Refer to \nameref{sub:theorem-6a}.
\end{proof} \end{proof}
\subsection{\sorry{Exercise 6.6}}% \subsection{\sorry{Exercise 6.6}}%

View File

@ -18,22 +18,22 @@ For any sets `A`, `B`, and `C`,
-/ -/
theorem theorem_6a_a (A : Set α) theorem theorem_6a_a (A : Set α)
: ∃ f, Set.BijOn f A A := by : ∃ F, Set.BijOn F A A := by
refine ⟨fun x => x, ?_⟩ refine ⟨fun x => x, ?_⟩
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
simp only [imp_self, implies_true, Set.image_id', true_and] simp only [imp_self, implies_true, Set.image_id', true_and]
exact Eq.subset rfl exact Eq.subset rfl
theorem theorem_6a_b [Nonempty α] (A : Set α) (B : Set β) theorem theorem_6a_b [Nonempty α] (A : Set α) (B : Set β)
(f : α → β) (hf : Set.BijOn f A B) (F : α → β) (hF : Set.BijOn F A B)
: ∃ g, Set.BijOn g B A := by : ∃ G, Set.BijOn G B A := by
refine ⟨Function.invFunOn f A, ?_⟩ refine ⟨Function.invFunOn F A, ?_⟩
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hf).mpr hf exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hF).mpr hF
theorem theorem_6a_c (A : Set α) (B : Set β) (C : Set γ) theorem theorem_6a_c (A : Set α) (B : Set β) (C : Set γ)
(f : α → β) (hf : Set.BijOn f A B) (F : α → β) (hF : Set.BijOn F A B)
(g : β → γ) (hg : Set.BijOn g B C) (G : β → γ) (hG : Set.BijOn G B C)
: ∃ h, Set.BijOn h A C := by : ∃ H, Set.BijOn H A C := by
exact ⟨g ∘ f, Set.BijOn.comp hg hf exact ⟨G ∘ F, Set.BijOn.comp hG hF
end Enderton.Set.Chapter_6 end Enderton.Set.Chapter_6