Enderton. Add additional definitions and prove Theorem 3E.
parent
9db5bcdac6
commit
27372eb160
|
@ -24,12 +24,18 @@
|
|||
\chapter{Reference}%
|
||||
\label{chap:reference}
|
||||
|
||||
\section{\partial{Composition}}%
|
||||
\section{\defined{Composition}}%
|
||||
\label{ref:composition}
|
||||
|
||||
The \textbf{composition} of sets $F$ and $G$ is
|
||||
$$F \circ G = \{\left< u, v \right> \mid \exists t(uGt \land tFv)\}.$$
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Set/Relation}{Set.Relation.comp}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Domain}}%
|
||||
\label{ref:domain}
|
||||
|
||||
|
@ -105,7 +111,7 @@ One-to-one functions are sometimes called \textbf{injections}.
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\partial{Image}}%
|
||||
\section{\defined{Image}}%
|
||||
\label{ref:image}
|
||||
|
||||
Let $A$ and $F$ be arbitrary sets.
|
||||
|
@ -116,12 +122,24 @@ The \textbf{image of $A$ under $F$} is the set
|
|||
& = \{v \mid (\exists u \in A) uFv\}.
|
||||
\end{align*}
|
||||
|
||||
\section{\partial{Inverse}}%
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Set/Relation}{Set.Relation.image}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Inverse}}%
|
||||
\label{ref:inverse}
|
||||
|
||||
The \textbf{inverse} of a set $F$ is the set
|
||||
$$F^{-1} = \{\left< u, v \right> \mid vFu\}.$$
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Set/Relation}{Set.Relation.inv}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Ordered Pair}}%
|
||||
\label{ref:ordered-pair}
|
||||
|
||||
|
@ -214,12 +232,18 @@ A \textbf{relation} is a set of \nameref{ref:ordered-pair}s.
|
|||
|
||||
\end{definition}
|
||||
|
||||
\section{\partial{Restriction}}%
|
||||
\section{\defined{Restriction}}%
|
||||
\label{ref:restriction}
|
||||
|
||||
The \textbf{restriction} of a set $F$ to set $A$ is the set
|
||||
$$F \restriction A = \{\left< u, v \right> \mid uFv \land u \in A\}.$$
|
||||
|
||||
\begin{definition}
|
||||
|
||||
\lean*{Common/Set/Relation}{Set.Relation.restriction}
|
||||
|
||||
\end{definition}
|
||||
|
||||
\section{\defined{Subset Axioms}}%
|
||||
\label{ref:subset-axioms}
|
||||
|
||||
|
@ -2997,7 +3021,7 @@ Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive
|
|||
\section{Functions}%
|
||||
\label{sec:functions}
|
||||
|
||||
\subsection{\partial{Theorem 3E}}%
|
||||
\subsection{\verified{Theorem 3E}}%
|
||||
\label{sub:theorem-3e}
|
||||
|
||||
\begin{theorem}[3E]
|
||||
|
@ -3009,6 +3033,17 @@ Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\statementpadding
|
||||
|
||||
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.theorem\_3e\_i}
|
||||
|
||||
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.theorem\_3e\_ii}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.theorem\_3e\_iii}
|
||||
|
||||
We prove that (i) $\dom{(F^{-1})} = \ran{F}$, (ii) $\ran{(F^{-1})} = \dom{F}$,
|
||||
and (iii) $(F^{-1})^{-1} = F$.
|
||||
|
||||
|
@ -3056,6 +3091,14 @@ Show that an ordered $4$-tuple is also an ordered $m$-tuple for every positive
|
|||
|
||||
\begin{proof}
|
||||
|
||||
\statementpadding
|
||||
|
||||
\lean*{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.theorem\_3f\_i}
|
||||
|
||||
\lean{Bookshelf/Enderton/Set/Chapter\_3}
|
||||
{Enderton.Set.Chapter\_3.theorem\_3f\_ii}
|
||||
|
||||
TODO
|
||||
|
||||
\end{proof}
|
||||
|
|
|
@ -100,20 +100,20 @@ theorem exercise_5_3 {A : Set (Set α)} {𝓑 : Set (Set β)}
|
|||
ext x
|
||||
rw [Set.mem_setOf_eq]
|
||||
apply Iff.intro
|
||||
· intro ⟨h₁, ⟨b, h₂⟩⟩
|
||||
exact ⟨b, ⟨h₂.left, ⟨h₁, h₂.right⟩⟩⟩
|
||||
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||
exact ⟨h₂, ⟨b, ⟨h₁, h₃⟩⟩⟩
|
||||
· intro ⟨h₁, b, h₂⟩
|
||||
exact ⟨b, h₂.left, h₁, h₂.right⟩
|
||||
· intro ⟨b, h₁, h₂, h₃⟩
|
||||
exact ⟨h₂, b, h₁, h₃⟩
|
||||
_ = ⋃₀ { Set.prod A p | p ∈ 𝓑 } := by
|
||||
ext x
|
||||
rw [Set.mem_setOf_eq]
|
||||
unfold Set.sUnion sSup Set.instSupSetSet
|
||||
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and]
|
||||
apply Iff.intro
|
||||
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||||
· intro ⟨b, h₁, h₂, h₃⟩
|
||||
exact ⟨b, h₁, h₂, h₃⟩
|
||||
· intro ⟨b, h₁, h₂, h₃⟩
|
||||
exact ⟨b, h₁, h₂, h₃⟩
|
||||
|
||||
/-- ### Exercise 5.5a
|
||||
|
||||
|
@ -268,7 +268,7 @@ theorem exercise_6_7 {R : Set.Relation α}
|
|||
Set.mem_image, Prod.exists, exists_and_right, exists_eq_right
|
||||
] at hd
|
||||
have ⟨y, hp⟩ := hd
|
||||
have hm : OrderedPair x y ∈ R.image (fun p => OrderedPair p.1 p.2) := by
|
||||
have hm : OrderedPair x y ∈ Set.image (fun p => OrderedPair p.1 p.2) R := by
|
||||
unfold Set.image
|
||||
simp only [Prod.exists, Set.mem_setOf_eq]
|
||||
exact ⟨x, ⟨y, ⟨hp, rfl⟩⟩⟩
|
||||
|
@ -279,7 +279,7 @@ theorem exercise_6_7 {R : Set.Relation α}
|
|||
unfold Set.Relation.ran Prod.snd at hr
|
||||
simp only [Set.mem_image, Prod.exists, exists_eq_right] at hr
|
||||
have ⟨t, ht⟩ := hr
|
||||
have hm : OrderedPair t x ∈ R.image (fun p => OrderedPair p.1 p.2) := by
|
||||
have hm : OrderedPair t x ∈ Set.image (fun p => OrderedPair p.1 p.2) R := by
|
||||
simp only [Set.mem_image, Prod.exists]
|
||||
exact ⟨t, ⟨x, ⟨ht, rfl⟩⟩⟩
|
||||
unfold OrderedPair at hm
|
||||
|
@ -329,7 +329,7 @@ theorem exercise_6_7 {R : Set.Relation α}
|
|||
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at this
|
||||
exact hxy_mem this
|
||||
|
||||
/-- ### Exercise 6.8i
|
||||
/-- ### Exercise 6.8 (i)
|
||||
|
||||
Show that for any set `𝓐`:
|
||||
```
|
||||
|
@ -350,12 +350,12 @@ theorem exercise_6_8_i {A : Set (Set.Relation α)}
|
|||
exists_exists_and_eq_and
|
||||
]
|
||||
apply Iff.intro
|
||||
· intro ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩
|
||||
exact ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩
|
||||
· intro ⟨t, ⟨ht, ⟨y, hx⟩⟩⟩
|
||||
exact ⟨y, ⟨t, ⟨ht, hx⟩⟩⟩
|
||||
· intro ⟨y, t, ht, hx⟩
|
||||
exact ⟨t, ht, y, hx⟩
|
||||
· intro ⟨t, ht, y, hx⟩
|
||||
exact ⟨y, t, ht, hx⟩
|
||||
|
||||
/-- ### Exercise 6.8ii
|
||||
/-- ### Exercise 6.8 (ii)
|
||||
|
||||
Show that for any set `𝓐`:
|
||||
```
|
||||
|
@ -380,7 +380,7 @@ theorem exercise_6_8_ii {A : Set (Set.Relation α)}
|
|||
· intro ⟨y, ⟨hy, ⟨t, ht⟩⟩⟩
|
||||
exact ⟨t, ⟨y, ⟨hy, ht⟩⟩⟩
|
||||
|
||||
/-- ## Exercise 6.9i
|
||||
/-- ### Exercise 6.9 (i)
|
||||
|
||||
Discuss the result of replacing the union operation by the intersection
|
||||
operation in the preceding problem.
|
||||
|
@ -406,7 +406,7 @@ theorem exercise_6_9_i {A : Set (Set.Relation α)}
|
|||
intro _ y hy R hR
|
||||
exact ⟨y, hy R hR⟩
|
||||
|
||||
/-- ## Exercise 6.9ii
|
||||
/-- ### Exercise 6.9 (ii)
|
||||
|
||||
Discuss the result of replacing the union operation by the intersection
|
||||
operation in the preceding problem.
|
||||
|
@ -432,4 +432,86 @@ theorem exercise_6_9_ii {A : Set (Set.Relation α)}
|
|||
intro _ y hy R hR
|
||||
exact ⟨y, hy R hR⟩
|
||||
|
||||
/-- ### Theorem 3E (i)
|
||||
|
||||
For a set `F`, `dom F⁻¹ = ran F`.
|
||||
-/
|
||||
theorem theorem_3e_i {F : Set.Relation α}
|
||||
: Set.Relation.dom (F.inv) = Set.Relation.ran F := by
|
||||
ext x
|
||||
unfold Set.Relation.dom Set.Relation.ran Set.Relation.inv
|
||||
simp only [
|
||||
Prod.exists,
|
||||
Set.mem_image,
|
||||
Set.mem_setOf_eq,
|
||||
Prod.mk.injEq,
|
||||
exists_and_right,
|
||||
exists_eq_right
|
||||
]
|
||||
apply Iff.intro
|
||||
· intro ⟨y, a, _, h⟩
|
||||
rw [← h.right.left]
|
||||
exact ⟨a, h.left⟩
|
||||
· intro ⟨y, hy⟩
|
||||
exact ⟨y, y, x, hy, rfl, rfl⟩
|
||||
|
||||
/-- ### Theorem 3E (ii)
|
||||
|
||||
For a set `F`, `ran F⁻¹ = dom F`.
|
||||
-/
|
||||
theorem theorem_3e_ii {F : Set.Relation α}
|
||||
: Set.Relation.ran (F.inv) = Set.Relation.dom F := by
|
||||
ext x
|
||||
unfold Set.Relation.dom Set.Relation.ran Set.Relation.inv
|
||||
simp only [
|
||||
Prod.exists,
|
||||
Set.mem_image,
|
||||
Set.mem_setOf_eq,
|
||||
Prod.mk.injEq,
|
||||
exists_eq_right,
|
||||
exists_and_right
|
||||
]
|
||||
apply Iff.intro
|
||||
· intro ⟨a, y, b, h⟩
|
||||
rw [← h.right.right]
|
||||
exact ⟨b, h.left⟩
|
||||
· intro ⟨y, hy⟩
|
||||
exact ⟨y, x, y, hy, rfl, rfl⟩
|
||||
|
||||
/-- ### Theorem 3E (iii)
|
||||
|
||||
For a set `F`, `(F⁻¹)⁻¹ = F`.
|
||||
-/
|
||||
theorem theorem_3e_iii {F : Set.Relation α}
|
||||
: F.inv.inv = F := by
|
||||
unfold Set.Relation.inv
|
||||
simp only [Prod.exists, Set.mem_setOf_eq, Prod.mk.injEq]
|
||||
ext x
|
||||
apply Iff.intro
|
||||
· intro hx
|
||||
have ⟨a₁, b₁, ⟨⟨a₂, b₂, h₁⟩, h₂⟩⟩ := hx
|
||||
rw [← h₂, ← h₁.right.right, ← h₁.right.left]
|
||||
exact h₁.left
|
||||
· intro hx
|
||||
have (p, q) := x
|
||||
refine ⟨q, p, ⟨?_, ?_⟩⟩
|
||||
· exact ⟨p, q, hx, rfl, rfl⟩
|
||||
· rfl
|
||||
|
||||
/-- ### Theorem 3F (i)
|
||||
|
||||
For a set `F`, `F⁻¹` is a function **iff** `F` is single-rooted.
|
||||
-/
|
||||
theorem theorem_3f_i {F : Set.Relation α}
|
||||
: Set.Relation.isSingleValued F.inv ↔ Set.Relation.isSingleRooted F := by
|
||||
sorry
|
||||
|
||||
/-- ### Theorem 3F (ii)
|
||||
|
||||
For a relation `F`, `F` is a function **iff** `F⁻¹` is single-rooted.
|
||||
-/
|
||||
theorem theorem_3f_ii {F : Set.Relation α}
|
||||
: Set.Relation.isSingleValued F ↔ Set.Relation.isSingleRooted F.inv := by
|
||||
sorry
|
||||
|
||||
end Enderton.Set.Chapter_3
|
|
@ -37,11 +37,51 @@ The field of a `Relation`.
|
|||
-/
|
||||
def fld (R : Relation α) : Set α := dom R ∪ ran R
|
||||
|
||||
/--
|
||||
The inverse of a `Relation`.
|
||||
-/
|
||||
def inv (R : Relation α) : Relation α := { (p.2, p.1) | p ∈ R }
|
||||
|
||||
/--
|
||||
The composition of two `Relation`s.
|
||||
-/
|
||||
def comp (F G : Relation α) : Relation α :=
|
||||
{ p | ∃ t, (p.1, t) ∈ G ∧ (t, p.2) ∈ F}
|
||||
|
||||
/--
|
||||
The restriction of a `Relation` to a `Set`.
|
||||
-/
|
||||
def restriction (R : Relation α) (A : Set α) : Relation α :=
|
||||
{ p ∈ R | p.1 ∈ A }
|
||||
|
||||
/--
|
||||
The image of a `Relation` under a `Set`.
|
||||
-/
|
||||
def image (R : Relation α) (A : Set α) : Set α :=
|
||||
{ y | ∃ u ∈ A, (u, y) ∈ R }
|
||||
|
||||
/--
|
||||
A `Relation` `R` is said to be single-rooted **iff** for all `y ∈ ran R`, there
|
||||
exists exactly one `x` such that `⟨x, y⟩ ∈ R`.
|
||||
-/
|
||||
def isSingleRooted (R : Relation α) : Prop :=
|
||||
∀ y ∈ R.ran, ∃! x, x ∈ R.dom ∧ (x, y) ∈ R
|
||||
|
||||
/--
|
||||
A `Relation` `R` is said to be single-valued **iff** for all `x ∈ dom R`, there
|
||||
exists exactly one `y` such that `⟨x, y⟩ ∈ R`.
|
||||
|
||||
Notice, a `Relation` that is single-valued is a function.
|
||||
-/
|
||||
def isSingleValued (R : Relation α) : Prop :=
|
||||
∀ x ∈ R.dom, ∃! y, y ∈ R.ran ∧ (x, y) ∈ R
|
||||
|
||||
/--
|
||||
Convert a `Relation` into an equivalent representation using `OrderedPair`s.
|
||||
-/
|
||||
def toOrderedPairs (R : Relation α) : Set (Set (Set α)) :=
|
||||
R.image (fun (x, y) => OrderedPair x y)
|
||||
-- Notice here we are using `Set.image` and *not* `Set.Relation.image`.
|
||||
Set.image (fun (x, y) => OrderedPair x y) R
|
||||
|
||||
end Relation
|
||||
|
||||
|
|
Loading…
Reference in New Issue