Write I 3.12 exercise prompts.
parent
5a0bf96550
commit
1d2fcf916b
|
@ -1,3 +1,8 @@
|
||||||
|
/-
|
||||||
|
Chapter I 3
|
||||||
|
|
||||||
|
A Set of Axioms for the Real-Number System
|
||||||
|
-/
|
||||||
import Common.Data.Real.Set
|
import Common.Data.Real.Set
|
||||||
|
|
||||||
#check Archimedean
|
#check Archimedean
|
||||||
|
|
|
@ -0,0 +1,131 @@
|
||||||
|
/-
|
||||||
|
I 3.12 Exercises
|
||||||
|
|
||||||
|
A Set of Axioms for the Real-Number System
|
||||||
|
-/
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 1
|
||||||
|
--
|
||||||
|
-- If `x` and `y` are arbitrary real numbers with `x < y`, prove that there is
|
||||||
|
-- at least one real `z` satisfying `x < z < y`.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 2
|
||||||
|
--
|
||||||
|
-- If `x` is an arbitrary real number, prove that there are integers `m` and `n`
|
||||||
|
-- such that `m < x < n`.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 3
|
||||||
|
--
|
||||||
|
-- If `x > 0`, prove that there is a positive integer `n` such that `1 / n < x`.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 4
|
||||||
|
--
|
||||||
|
-- If `x` is an arbitrary real number, prove that there is exactly one integer
|
||||||
|
-- `n` which satisfies the inequalities `n ≤ x < n + 1`. This `n` is called the
|
||||||
|
-- greatest integer in `x` and is denoted by `⌊x⌋`. For example, `⌊5⌋ = 5`,
|
||||||
|
-- `⌊5 / 2⌋ = 2`, `⌊-8/3⌋ = -3`.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 5
|
||||||
|
--
|
||||||
|
-- If `x` is an arbitrary real number, prove that there is exactly one integer
|
||||||
|
-- `n` which satisfies `x ≤ n < x + 1`.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 6
|
||||||
|
--
|
||||||
|
-- If `x` and `y` are arbitrary real numbers, `x < y`, prove that there exists
|
||||||
|
-- at least one rational number `r` satisfying `x < r < y`, and hence infinitely
|
||||||
|
-- many. This property is often described by saying that the rational numbers
|
||||||
|
-- are *dense* in the real-number system.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 7
|
||||||
|
--
|
||||||
|
-- If `x` is rational, `x ≠ 0`, and `y` irrational, prove that `x + y`, `x - y`,
|
||||||
|
-- `xy`, `x / y`, and `y / x` are all irrational.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 8
|
||||||
|
--
|
||||||
|
-- Is the sum or product of two irrational numbers always irrational?
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 9
|
||||||
|
--
|
||||||
|
-- If `x` and `y` are arbitrary real numbers, `x < y`, prove that there exists
|
||||||
|
-- at least one irrational number `z` satisfying `x < z < y`, and hence
|
||||||
|
-- infinitely many.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 10
|
||||||
|
--
|
||||||
|
-- An integer `n` is called *even* if `n = 2m` for some integer `m`, and *odd*
|
||||||
|
-- if `n + 1` is even. Prove the following statements:
|
||||||
|
--
|
||||||
|
-- (a) An integer cannot be both even and odd.
|
||||||
|
-- (b) Every integer is either even or odd.
|
||||||
|
-- (c) The sum or product of two even integers is even. What can you say about
|
||||||
|
-- the sum or product of two odd integers?
|
||||||
|
-- (d) If `n²` is even, so is `n`. If `a² = 2b²`, where `a` and `b` are
|
||||||
|
-- integers, then both `a` and `b` are even.
|
||||||
|
-- (e) Every rational number can be expressed in the form `a / b`, where `a` and
|
||||||
|
-- `b` are integers, at least one of which is odd.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 11
|
||||||
|
--
|
||||||
|
-- Prove that there is no rational number whose square is `2`.
|
||||||
|
--
|
||||||
|
-- [Hint: Argue by contradiction. Assume `(a / b)² = 2`, where `a` and `b` are
|
||||||
|
-- integers, at least one of which is odd. Use parts of Exercise 10 to deduce a
|
||||||
|
-- contradiction.]
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
||||||
|
|
||||||
|
-- ========================================
|
||||||
|
-- Exercise 12
|
||||||
|
--
|
||||||
|
-- The Archimedean property of the real-number system was deduced as a
|
||||||
|
-- consequence of the least-upper-bound axiom. Prove that the set of rational
|
||||||
|
-- numbers satisfies the Archimedean property but not he least-upper-bound
|
||||||
|
-- property. This shows that the Archimedean property does not imply the
|
||||||
|
-- least-upper-bound axiom.
|
||||||
|
-- ========================================
|
||||||
|
|
||||||
|
-- # TODO
|
Loading…
Reference in New Issue