Update status of Theorem 1.10-11.
parent
759b17f802
commit
1448a93015
|
@ -2578,7 +2578,7 @@ The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if
|
|||
\chapter{The Area of an Ordinate Set Expressed as an Interval}%
|
||||
\label{chap:area-ordinate-set-expressed-interval}
|
||||
|
||||
\section{Theorem 1.10}%
|
||||
\section{\partial{Theorem 1.10}}%
|
||||
\label{sec:theorem-1.10}
|
||||
|
||||
Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval
|
||||
|
@ -2601,7 +2601,7 @@ Then $Q$ is measurable and its area is equal to the integral
|
|||
|
||||
\end{proof}
|
||||
|
||||
\section{Theorem 1.11}%
|
||||
\section{\partial{Theorem 1.11}}%
|
||||
\label{sec:theorem-1.11}
|
||||
|
||||
Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.
|
||||
|
|
Loading…
Reference in New Issue