diff --git a/Bookshelf/Apostol.tex b/Bookshelf/Apostol.tex index 27122aa..16471d7 100644 --- a/Bookshelf/Apostol.tex +++ b/Bookshelf/Apostol.tex @@ -2578,7 +2578,7 @@ The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if \chapter{The Area of an Ordinate Set Expressed as an Interval}% \label{chap:area-ordinate-set-expressed-interval} -\section{Theorem 1.10}% +\section{\partial{Theorem 1.10}}% \label{sec:theorem-1.10} Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval @@ -2601,7 +2601,7 @@ Then $Q$ is measurable and its area is equal to the integral \end{proof} -\section{Theorem 1.11}% +\section{\partial{Theorem 1.11}}% \label{sec:theorem-1.11} Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.