Update status of Theorem 1.10-11.

finite-set-exercises
Joshua Potter 2023-05-16 16:32:24 -06:00
parent 759b17f802
commit 1448a93015
1 changed files with 2 additions and 2 deletions

View File

@ -2578,7 +2578,7 @@ The function $f$ is \nameref{sec:def-integrable} on $[a, b]$ if and only if
\chapter{The Area of an Ordinate Set Expressed as an Interval}% \chapter{The Area of an Ordinate Set Expressed as an Interval}%
\label{chap:area-ordinate-set-expressed-interval} \label{chap:area-ordinate-set-expressed-interval}
\section{Theorem 1.10}% \section{\partial{Theorem 1.10}}%
\label{sec:theorem-1.10} \label{sec:theorem-1.10}
Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval Let $f$ be a nonnegative function, \nameref{sec:def-integrable} on an interval
@ -2601,7 +2601,7 @@ Then $Q$ is measurable and its area is equal to the integral
\end{proof} \end{proof}
\section{Theorem 1.11}% \section{\partial{Theorem 1.11}}%
\label{sec:theorem-1.11} \label{sec:theorem-1.11}
Let $f$ be a nonnegative function, integrable on an interval $[a, b]$. Let $f$ be a nonnegative function, integrable on an interval $[a, b]$.