37 lines
766 B
TeX
37 lines
766 B
TeX
|
\documentclass{report}
|
||
|
|
||
|
\input{../preamble}
|
||
|
|
||
|
\newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}}
|
||
|
\newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\header
|
||
|
{A Mathematical Introduction to Logic}
|
||
|
{Herbert B. Enderton}
|
||
|
|
||
|
\tableofcontents
|
||
|
|
||
|
% Sets first chapter to `0` to match Enderton book.
|
||
|
\setcounter{chapter}{0}
|
||
|
\addtocounter{chapter}{-1}
|
||
|
|
||
|
\chapter{Useful Facts About Sets}%
|
||
|
\label{chap:useful-facts-about-sets}
|
||
|
|
||
|
\section{\unverified{Lemma 0A}}%
|
||
|
\label{sec:lemma-0a}
|
||
|
|
||
|
Assume that $\langle x_1, \ldots, x_m \rangle =
|
||
|
\langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$.
|
||
|
Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$.
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\lean{Bookshelf/Enderton/Chapter\_0}{Enderton.Chapter\_0.lemma\_0a}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\end{document}
|