\documentclass{report} \input{../preamble} \newcommand{\lean}[2]{\leanref{../#1.html\##2}{#2}} \newcommand{\leanPretty}[3]{\leanref{../#1.html\##2}{#3}} \begin{document} \header {A Mathematical Introduction to Logic} {Herbert B. Enderton} \tableofcontents % Sets first chapter to `0` to match Enderton book. \setcounter{chapter}{0} \addtocounter{chapter}{-1} \chapter{Useful Facts About Sets}% \label{chap:useful-facts-about-sets} \section{\unverified{Lemma 0A}}% \label{sec:lemma-0a} Assume that $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_m, \ldots, y_{m+k} \rangle$. Then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$. \begin{proof} \lean{Bookshelf/Enderton/Chapter\_0}{Enderton.Chapter\_0.lemma\_0a} \end{proof} \end{document}