bookshelf/Exercises/Apostol/Chapter_I_3_tex.tex

117 lines
2.6 KiB
TeX
Raw Normal View History

2023-04-10 17:33:22 +00:00
\documentclass{article}
\usepackage[shortlabels]{enumitem}
2023-04-10 17:33:22 +00:00
\input{preamble}
2023-04-10 17:33:22 +00:00
\newcommand{\link}[1]{\lean{../..}{Exercises/Apostol/Chapter_I_3}
{Exercises.Apostol.Chapter\_I\_3.Real.#1}}
2023-04-10 17:33:22 +00:00
\begin{document}
2023-04-10 17:33:22 +00:00
\section*{Theorem I.27}%
\label{sec:theorem-i.27}
2023-04-10 17:33:22 +00:00
Every nonempty set $S$ that is bounded below has a greatest lower bound; that
is, there is a real number $L$ such that $L = \inf{S}$.
2023-04-10 17:33:22 +00:00
\begin{proof}
\link{exists_isGLB}
2023-04-10 17:33:22 +00:00
\end{proof}
\section*{Theorem I.29}%
\label{sec:theorem-i.29}
2023-04-10 17:33:22 +00:00
For every real $x$ there exists a positive integer $n$ such that $n > x$.
2023-04-10 17:33:22 +00:00
\begin{proof}
\link{exists_pnat_geq_self}
2023-04-10 17:33:22 +00:00
\end{proof}
\section*{Theorem I.30 (Archimedean Property of the Reals)}%
\label{sec:theorem-i.30}
2023-04-10 17:33:22 +00:00
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
integer $n$ such that $nx > y$.
2023-04-10 17:33:22 +00:00
\begin{proof}
\link{exists_pnat_mul_self_geq_of_pos}
2023-04-10 17:33:22 +00:00
\end{proof}
\section*{Theorem I.31}%
\label{sec:theorem-i.31}
2023-04-10 17:33:22 +00:00
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
$$a \leq x \leq a + \frac{y}{n}$$
for every integer $n \geq 1$, then $x = a$.
2023-04-10 17:33:22 +00:00
\begin{proof}
\link{forall_pnat_leq_self_leq_frac_imp_eq}
\end{proof}
\section*{Theorem I.32}%
\label{sec:theorem-i.32}
Let $h$ be a given positive number and let $S$ be a set of real numbers.
\begin{enumerate}[(a)]
\item If $S$ has a supremum, then for some $x$ in $S$ we have
$$x > \sup{S} - h.$$
\item If $S$ has an infimum, then for some $x$ in $S$ we have
$$x < \inf{S} + h.$$
\end{enumerate}
\begin{proof}
\begin{enumerate}[(a)]
\item \link{sup_imp_exists_gt_sup_sub_delta}
\item \link{inf_imp_exists_lt_inf_add_delta}
\end{enumerate}
2023-04-10 17:33:22 +00:00
\end{proof}
\section*{Theorem I.33 (Additive Property)}%
\label{sec:theorem-i.33}
Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
$$C = \{a + b : a \in A, b \in B\}.$$
\begin{enumerate}[(a)]
\item If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and
$$\sup{C} = \sup{A} + \sup{B}.$$
\item If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and
$$\inf{C} = \inf{A} + \inf{B}.$$
\end{enumerate}
\begin{proof}
\begin{enumerate}[(a)]
\item \link{sup_minkowski_sum_eq_sup_add_sup}
\item \link{inf_minkowski_sum_eq_inf_add_inf}
\end{enumerate}
\end{proof}
\section*{Theorem I.34}%
\label{sec:theorem-i.34}
Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that
$$s \leq t$$
for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$
has an infimum, and they satisfy the inequality
$$\sup{S} \leq \inf{T}.$$
\begin{proof}
\link{forall_mem_le_forall_mem_imp_sup_le_inf}
\end{proof}
2023-04-10 17:33:22 +00:00
\end{document}