bookshelf/theorem-proving-in-lean/Avigad/Chapter7.lean

216 lines
7.0 KiB
Plaintext
Raw Normal View History

/-
2023-04-02 14:57:58 +00:00
Chapter 7
2023-04-02 14:57:58 +00:00
Inductive Types
-/
2023-04-08 16:32:20 +00:00
-- ========================================
-- Exercise 1
--
-- Try defining other operations on the natural numbers, such as multiplication,
-- the predecessor function (with `pred 0 = 0`), truncated subtraction (with
-- `n - m = 0` when `m` is greater than or equal to `n`), and exponentiation.
-- Then try proving some of their basic properties, building on the theorems we
-- have already proved.
--
-- Since many of these are already defined in Leans core library, you should
-- work within a namespace named hide, or something like that, in order to avoid
-- name clashes.
2023-04-08 16:32:20 +00:00
-- ========================================
2023-02-10 21:51:20 +00:00
namespace ex1
-- As defined in the book.
2023-02-10 21:51:20 +00:00
inductive Nat where
| zero : Nat
| succ : Nat → Nat
2023-02-10 21:51:20 +00:00
namespace Nat
2023-02-10 21:51:20 +00:00
def add (m n : Nat) : Nat :=
match n with
| Nat.zero => m
| Nat.succ n => Nat.succ (add m n)
2023-02-10 21:51:20 +00:00
instance : Add Nat where
add := add
theorem add_zero (m : Nat) : m + Nat.zero = m :=
2023-02-10 21:51:20 +00:00
rfl
theorem add_succ (m n : Nat) : m + n.succ = (m + n).succ :=
2023-02-10 21:51:20 +00:00
rfl
theorem zero_add (n : Nat) : Nat.zero + n = n :=
2023-02-10 21:51:20 +00:00
Nat.recOn (motive := fun x => Nat.zero + x = x)
n
(show Nat.zero + Nat.zero = Nat.zero from rfl)
(fun (n : Nat) (ih : Nat.zero + n = n) =>
show Nat.zero + n.succ = n.succ from
calc
Nat.zero + n.succ
= (Nat.zero + n).succ := add_succ Nat.zero n
_ = n.succ := by rw [ih])
-- Additional definitions.
def mul (m n : Nat) : Nat :=
match n with
| Nat.zero => Nat.zero
| Nat.succ n => m + mul m n
def pred (n : Nat) : Nat :=
match n with
| Nat.zero => Nat.zero
| Nat.succ n => n
def sub (m n : Nat) : Nat :=
match n with
| Nat.zero => m
| Nat.succ n => sub (pred m) n
2023-02-10 21:51:20 +00:00
def exp (m n : Nat) : Nat :=
match n with
| Nat.zero => Nat.zero.succ
| Nat.succ n => mul m (exp m n)
2023-02-10 21:51:20 +00:00
end Nat
end ex1
2023-04-08 16:32:20 +00:00
-- ========================================
-- Exercise 2
--
-- Define some operations on lists, like a `length` function or the `reverse`
-- function. Prove some properties, such as the following:
--
-- a. `length (s ++ t) = length s + length t`
-- b. `length (reverse t) = length t`
-- c. `reverse (reverse t) = t`
2023-04-08 16:32:20 +00:00
-- ========================================
2023-02-10 21:51:20 +00:00
namespace ex2
variable {α : Type _}
theorem length_sum (s t : List α)
: List.length (s ++ t) = List.length s + List.length t :=
List.recOn s
(by rw [List.nil_append, List.length, Nat.zero_add])
(fun hd tl ih => by rw [
List.length,
List.cons_append,
List.length,
ih,
Nat.add_assoc,
Nat.add_comm t.length,
Nat.add_assoc
])
theorem length_inject_anywhere (x : α) (as bs : List α)
: List.length (as ++ [x] ++ bs) = List.length as + List.length bs + 1 := by
induction as with
| nil => simp
| cons head tail ih => calc
List.length (head :: tail ++ [x] ++ bs)
= List.length (tail ++ [x] ++ bs) + 1 := rfl
_ = List.length tail + List.length bs + 1 + 1 := by rw [ih]
_ = List.length tail + (List.length bs + 1) + 1 := by rw [Nat.add_assoc (List.length tail)]
_ = List.length tail + (1 + List.length bs) + 1 := by rw [Nat.add_comm (List.length bs)]
_ = List.length tail + 1 + List.length bs + 1 := by rw [Nat.add_assoc (List.length tail) 1]
_ = List.length (head :: tail) + List.length bs + 1 := rfl
theorem list_reverse_aux_append (as bs : List α)
: List.reverseAux as bs = List.reverse as ++ bs := by
induction as generalizing bs with
| nil => rw [List.reverseAux, List.reverse, List.reverseAux, List.nil_append]
| cons head tail ih => calc
List.reverseAux (head :: tail) bs
= List.reverseAux tail (head :: bs) := rfl
_ = List.reverse tail ++ (head :: bs) := by rw [ih]
_ = List.reverse tail ++ ([head] ++ bs) := rfl
_ = List.reverse tail ++ [head] ++ bs := by rw [List.append_assoc]
_ = List.reverseAux tail [head] ++ bs := by rw [ih]
_ = List.reverseAux (head :: tail) [] ++ bs := rfl
theorem length_reverse (t : List α)
: List.length (List.reverse t) = List.length t := by
induction t with
| nil => simp
| cons head tail ih => calc
List.length (List.reverse (head :: tail))
= List.length (List.reverseAux tail [head]) := rfl
_ = List.length (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
_ = List.length (List.reverse tail) + List.length [head] := by simp
_ = List.length tail + List.length [head] := by rw [ih]
_ = List.length tail + 1 := rfl
_ = List.length [] + List.length tail + 1 := by simp
_ = List.length ([] ++ [head] ++ tail) := by rw [length_inject_anywhere]
_ = List.length (head :: tail) := rfl
theorem reverse_reverse_aux (as bs : List α)
: List.reverse (as ++ bs) = List.reverse bs ++ List.reverse as := by
induction as generalizing bs with
| nil => simp
| cons head tail ih => calc
List.reverse (head :: tail ++ bs)
= List.reverseAux (head :: tail ++ bs) [] := rfl
_ = List.reverseAux (tail ++ bs) [head] := rfl
_ = List.reverse (tail ++ bs) ++ [head] := by rw [list_reverse_aux_append]
_ = List.reverse bs ++ List.reverse tail ++ [head] := by rw [ih]
_ = List.reverse bs ++ (List.reverse tail ++ [head]) := by rw [List.append_assoc]
_ = List.reverse bs ++ (List.reverseAux tail [head]) := by rw [list_reverse_aux_append]
_ = List.reverse bs ++ (List.reverseAux (head :: tail) []) := rfl
_ = List.reverse bs ++ List.reverse (head :: tail) := rfl
theorem reverse_reverse (t : List α)
: List.reverse (List.reverse t) = t := by
induction t with
| nil => simp
| cons head tail ih => calc
List.reverse (List.reverse (head :: tail))
= List.reverse (List.reverseAux tail [head]) := rfl
_ = List.reverse (List.reverse tail ++ [head]) := by rw [list_reverse_aux_append]
_ = List.reverse [head] ++ List.reverse (List.reverse tail) := by rw [reverse_reverse_aux]
_ = List.reverse [head] ++ tail := by rw [ih]
_ = [head] ++ tail := by simp
_ = head :: tail := rfl
2023-02-10 21:51:20 +00:00
end ex2
2023-04-08 16:32:20 +00:00
-- ========================================
-- Exercise 3
--
-- Define an inductive data type consisting of terms built up from the following
-- constructors:
--
-- • `const n`, a constant denoting the natural number `n`
-- • `var n`, a variable, numbered `n`
-- • `plus s t`, denoting the sum of `s` and `t`
-- • `times s t`, denoting the product of `s` and `t`
--
-- Recursively define a function that evaluates any such term with respect to an
-- assignment of values to the variables.
2023-04-08 16:32:20 +00:00
-- ========================================
2023-02-10 21:51:20 +00:00
namespace ex3
inductive Foo : Type _
| const : Nat → Foo
| var : Nat → Foo
| plus : Foo → Foo → Foo
| times : Foo → Foo → Foo
def value_at : Nat → List Nat → Nat
| _, [] => default
| 0, vs => List.head! vs
| (i + 1), vs => value_at i (List.tail! vs)
-- The provided "variables" are supplied in a 0-indexed list.
def eval_foo : Foo → List Nat → Nat
| (Foo.const n) , _ => n
| (Foo.var n) , vs => value_at n vs
| (Foo.plus m n) , vs => eval_foo m vs + eval_foo n vs
| (Foo.times m n), vs => eval_foo m vs * eval_foo n vs
end ex3