bookshelf/common/Common/Sequence/Arithmetic.tex

29 lines
600 B
TeX
Raw Normal View History

\documentclass{article}
\usepackage{amsfonts, amsthm}
\usepackage{hyperref}
\newtheorem{theorem}{Theorem}
\newtheorem{custominner}{Theorem}
\newenvironment{custom}[1]{%
\renewcommand\thecustominner{#1}%
\custominner
}{\endcustominner}
\begin{document}
\begin{theorem}[Sum of Arithmetic Series]
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
Then for some $n \in \mathbb{N}$,
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
\end{theorem}
\begin{proof}
\href{Arithmetic.lean}{Common.Sequence.Arithmetic.sum\_recursive\_closed}
\end{proof}
\end{document}