\documentclass{article} \usepackage{amsfonts, amsthm} \usepackage{hyperref} \newtheorem{theorem}{Theorem} \newtheorem{custominner}{Theorem} \newenvironment{custom}[1]{% \renewcommand\thecustominner{#1}% \custominner }{\endcustominner} \begin{document} \begin{theorem}[Sum of Arithmetic Series] Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. Then for some $n \in \mathbb{N}$, $$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$ \end{theorem} \begin{proof} \href{Arithmetic.lean}{Common.Sequence.Arithmetic.sum\_recursive\_closed} \end{proof} \end{document}