164 lines
3.4 KiB
TeX
164 lines
3.4 KiB
TeX
|
\documentclass{article}
|
||
|
\usepackage{amsmath}
|
||
|
\usepackage[shortlabels]{enumitem}
|
||
|
|
||
|
\input{../../preamble}
|
||
|
|
||
|
\newcommand{\link}[1]{\lean{../..}
|
||
|
{Exercises/Apostol/Exercises\_1\_11}
|
||
|
{Exercises.Apostol.Exercises\_1\_11.#1}
|
||
|
{Exercises\_1\_11.#1}
|
||
|
}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\section{Exercise 4}%
|
||
|
\label{sec:exercise-4}
|
||
|
|
||
|
Prove that the greatest-integer function has the properties indicated:
|
||
|
|
||
|
\subsection{Exercise 4a}%
|
||
|
\label{sub:exercise-4a}
|
||
|
|
||
|
$\floor{x + n} = \floor{x} + n$ for every integer $n$.
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\link{exercise\_4a}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\subsection{Exercise 4b}%
|
||
|
\label{sub:exercise-4b}
|
||
|
|
||
|
$\floor{-x} =
|
||
|
\begin{cases}
|
||
|
-\floor{x} & \text{if } x \text{ is an integer}, \\
|
||
|
-\floor{x} - 1 & \text{otherwise}.
|
||
|
\end{cases}$
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\link{exercise\_4b}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\subsection{Exercise 4c}%
|
||
|
\label{sub:exercise-4c}
|
||
|
|
||
|
$\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$.
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\link{exercise\_4c}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\subsection{Exercise 4d}%
|
||
|
\label{sub:exercise-4d}
|
||
|
|
||
|
$\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\link{exercise\_4d}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\subsection{Exercise 4e}%
|
||
|
\label{sub:exercise-4e}
|
||
|
|
||
|
$\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\link{exercise\_4e}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\section{Exercise 5}%
|
||
|
\label{sec:exercise-5}
|
||
|
|
||
|
The formulas in Exercises 4(d) and 4(e) suggest a generalization for
|
||
|
$\floor{nx}$.
|
||
|
State and prove such a generalization.
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
\link{exercise\_5}
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\section{Exercise 6}%
|
||
|
\label{sec:exercise-6}
|
||
|
|
||
|
Recall that a lattice point $(x, y)$ in the plane is one whose coordinates are
|
||
|
integers.
|
||
|
Let $f$ be a nonnegative function whose domain is the interval $[a, b]$, where
|
||
|
$a$ and $b$ are integers, $a < b$.
|
||
|
Let $S$ denote the set of points $(x, y)$ satisfying $a \leq x \leq b$,
|
||
|
$0 < y \leq f(x)$.
|
||
|
Prove that the number of lattice points in $S$ is equal to the sum
|
||
|
$$\sum_{n=a}^b \floor{f(n)}.$$
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
TODO
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\section{Exercise 7}%
|
||
|
\label{sec:exercise-7}
|
||
|
|
||
|
If $a$ and $b$ are positive integers with no common factor, we have the formula
|
||
|
$$\sum_{n=1}^{b-1} \floor{\frac{na}{b}} = \frac{(a - 1)(b - 1)}{2}.$$
|
||
|
When $b = 1$, the sum on the left is understood to be $0$.
|
||
|
|
||
|
\subsection{Exercise 7a}%
|
||
|
\label{sub:exercise-7a}
|
||
|
|
||
|
Derive this result by a geometric argument, counting lattice points in a right
|
||
|
triangle.
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
TODO
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\subsection{Exercise 7b}%
|
||
|
\label{sub:exercise-7b}
|
||
|
|
||
|
Derive the result analytically as follows:
|
||
|
By changing the index of summation, note that
|
||
|
$\sum_{n=1}^{b-1} \floor{na / b} = \sum_{n=1}^{b-1} \floor{a(b - n) / b}$.
|
||
|
Now apply Exercises 4(a) and (b) to the bracket on the right.
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
TODO
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\section{Exercise 8}%
|
||
|
\label{sec:exercise-8}
|
||
|
|
||
|
Let $S$ be a set of points on the real line.
|
||
|
The \textit{characteristic function} of $S$ is, by definition, the function
|
||
|
$\chi_S$ such that $\chi_S(x) = 1$ for every $x$ in $S$, and $\chi_S(x) = 0$
|
||
|
for those $x$ not in $S$.
|
||
|
Let $f$ be a step function which takes the constant value $c_k$ on the $k$th
|
||
|
open subinterval $I_k$ of some partition of an interval $[a, b]$.
|
||
|
Prove that for each $x$ in the union $I_1 \cup I_2 \cup \cdots \cup I_n$ we have
|
||
|
$$f(x) = \sum_{k=1}^n c_k\chi_{I_k}(x).$$
|
||
|
This property is described by saying that every step function is a linear
|
||
|
combination of characteristic functions of intervals.
|
||
|
|
||
|
\begin{proof}
|
||
|
|
||
|
TODO
|
||
|
|
||
|
\end{proof}
|
||
|
|
||
|
\end{document}
|