\documentclass{article} \usepackage{amsmath} \usepackage[shortlabels]{enumitem} \input{../../preamble} \newcommand{\link}[1]{\lean{../..} {Exercises/Apostol/Exercises\_1\_11} {Exercises.Apostol.Exercises\_1\_11.#1} {Exercises\_1\_11.#1} } \begin{document} \section{Exercise 4}% \label{sec:exercise-4} Prove that the greatest-integer function has the properties indicated: \subsection{Exercise 4a}% \label{sub:exercise-4a} $\floor{x + n} = \floor{x} + n$ for every integer $n$. \begin{proof} \link{exercise\_4a} \end{proof} \subsection{Exercise 4b}% \label{sub:exercise-4b} $\floor{-x} = \begin{cases} -\floor{x} & \text{if } x \text{ is an integer}, \\ -\floor{x} - 1 & \text{otherwise}. \end{cases}$ \begin{proof} \link{exercise\_4b} \end{proof} \subsection{Exercise 4c}% \label{sub:exercise-4c} $\floor{x + y} = \floor{x} + \floor{y}$ or $\floor{x} + \floor{y} + 1$. \begin{proof} \link{exercise\_4c} \end{proof} \subsection{Exercise 4d}% \label{sub:exercise-4d} $\floor{2x} = \floor{x} + \floor{x + \frac{1}{2}}.$ \begin{proof} \link{exercise\_4d} \end{proof} \subsection{Exercise 4e}% \label{sub:exercise-4e} $\floor{3x} = \floor{x} + \floor{x + \frac{1}{3}} + \floor{x + \frac{2}{3}}.$ \begin{proof} \link{exercise\_4e} \end{proof} \section{Exercise 5}% \label{sec:exercise-5} The formulas in Exercises 4(d) and 4(e) suggest a generalization for $\floor{nx}$. State and prove such a generalization. \begin{proof} \link{exercise\_5} \end{proof} \section{Exercise 6}% \label{sec:exercise-6} Recall that a lattice point $(x, y)$ in the plane is one whose coordinates are integers. Let $f$ be a nonnegative function whose domain is the interval $[a, b]$, where $a$ and $b$ are integers, $a < b$. Let $S$ denote the set of points $(x, y)$ satisfying $a \leq x \leq b$, $0 < y \leq f(x)$. Prove that the number of lattice points in $S$ is equal to the sum $$\sum_{n=a}^b \floor{f(n)}.$$ \begin{proof} TODO \end{proof} \section{Exercise 7}% \label{sec:exercise-7} If $a$ and $b$ are positive integers with no common factor, we have the formula $$\sum_{n=1}^{b-1} \floor{\frac{na}{b}} = \frac{(a - 1)(b - 1)}{2}.$$ When $b = 1$, the sum on the left is understood to be $0$. \subsection{Exercise 7a}% \label{sub:exercise-7a} Derive this result by a geometric argument, counting lattice points in a right triangle. \begin{proof} TODO \end{proof} \subsection{Exercise 7b}% \label{sub:exercise-7b} Derive the result analytically as follows: By changing the index of summation, note that $\sum_{n=1}^{b-1} \floor{na / b} = \sum_{n=1}^{b-1} \floor{a(b - n) / b}$. Now apply Exercises 4(a) and (b) to the bracket on the right. \begin{proof} TODO \end{proof} \section{Exercise 8}% \label{sec:exercise-8} Let $S$ be a set of points on the real line. The \textit{characteristic function} of $S$ is, by definition, the function $\chi_S$ such that $\chi_S(x) = 1$ for every $x$ in $S$, and $\chi_S(x) = 0$ for those $x$ not in $S$. Let $f$ be a step function which takes the constant value $c_k$ on the $k$th open subinterval $I_k$ of some partition of an interval $[a, b]$. Prove that for each $x$ in the union $I_1 \cup I_2 \cup \cdots \cup I_n$ we have $$f(x) = \sum_{k=1}^n c_k\chi_{I_k}(x).$$ This property is described by saying that every step function is a linear combination of characteristic functions of intervals. \begin{proof} TODO \end{proof} \end{document}