268 lines
7.5 KiB
Plaintext
268 lines
7.5 KiB
Plaintext
|
import Mathlib.Tactic.Ring
|
|||
|
|
|||
|
/--
|
|||
|
A representation of a possibly empty left-biased tuple. `n`-tuples are defined
|
|||
|
recursively as follows:
|
|||
|
|
|||
|
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
|
|||
|
|
|||
|
Keep in mind a tuple in Lean already exists but it differs in two ways:
|
|||
|
|
|||
|
1. It is right associative. That is, `(x₁, x₂, x₃)` evaluates to
|
|||
|
`(x₁, (x₂, x₃))` instead of `((x₁, x₂), x₃)`.
|
|||
|
2. Internally a tuple is syntactic sugar for nested `Prod` instances. Inputs
|
|||
|
types of `Prod` are not required to be the same meaning non-homogeneous
|
|||
|
collections are allowed.
|
|||
|
|
|||
|
In general, prefer using `Prod` over this `Tuple` definition. This exists solely
|
|||
|
for proving theorems outlined in Enderton's book.
|
|||
|
-/
|
|||
|
inductive LTuple : (α : Type u) → (size : Nat) → Type u where
|
|||
|
| nil : LTuple α 0
|
|||
|
| snoc : LTuple α n → α → LTuple α (n + 1)
|
|||
|
|
|||
|
namespace LTuple
|
|||
|
|
|||
|
-- ========================================
|
|||
|
-- Coercions
|
|||
|
-- ========================================
|
|||
|
|
|||
|
scoped instance : CoeOut (LTuple α (min (m + n) m)) (LTuple α m) where
|
|||
|
coe := cast (by simp)
|
|||
|
|
|||
|
scoped instance : Coe (LTuple α 0) (LTuple α (min n 0)) where
|
|||
|
coe := cast (by rw [Nat.min_zero])
|
|||
|
|
|||
|
scoped instance : Coe (LTuple α 0) (LTuple α (min 0 n)) where
|
|||
|
coe := cast (by rw [Nat.zero_min])
|
|||
|
|
|||
|
scoped instance : Coe (LTuple α n) (LTuple α (min n n)) where
|
|||
|
coe := cast (by simp)
|
|||
|
|
|||
|
scoped instance : Coe (LTuple α n) (LTuple α (0 + n)) where
|
|||
|
coe := cast (by simp)
|
|||
|
|
|||
|
scoped instance : Coe (LTuple α (min m n + 1)) (LTuple α (min (m + 1) (n + 1))) where
|
|||
|
coe := cast (by rw [Nat.min_succ_succ])
|
|||
|
|
|||
|
scoped instance : Coe (LTuple α m) (LTuple α (min (m + n) m)) where
|
|||
|
coe := cast (by simp)
|
|||
|
|
|||
|
-- ========================================
|
|||
|
-- Equality
|
|||
|
-- ========================================
|
|||
|
|
|||
|
theorem eq_nil : @LTuple.nil α = nil := rfl
|
|||
|
|
|||
|
theorem eq_iff_singleton : (a = b) ↔ (snoc a nil = snoc b nil) := by
|
|||
|
apply Iff.intro
|
|||
|
· intro h; rw [h]
|
|||
|
· intro h; injection h
|
|||
|
|
|||
|
theorem eq_iff_snoc {t₁ t₂ : LTuple α n}
|
|||
|
: (a = b ∧ t₁ = t₂) ↔ (snoc t₁ a = snoc t₂ b) := by
|
|||
|
apply Iff.intro
|
|||
|
· intro ⟨h₁, h₂ ⟩; rw [h₁, h₂]
|
|||
|
· intro h
|
|||
|
injection h with _ h₁ h₂
|
|||
|
exact And.intro h₂ h₁
|
|||
|
|
|||
|
/--
|
|||
|
Implements decidable equality for `Tuple α m`, provided `a` has decidable
|
|||
|
equality.
|
|||
|
-/
|
|||
|
protected def hasDecEq [DecidableEq α] (t₁ t₂ : LTuple α n)
|
|||
|
: Decidable (Eq t₁ t₂) :=
|
|||
|
match t₁, t₂ with
|
|||
|
| nil, nil => isTrue eq_nil
|
|||
|
| snoc as a, snoc bs b =>
|
|||
|
match LTuple.hasDecEq as bs with
|
|||
|
| isFalse np => isFalse (fun h => absurd (eq_iff_snoc.mpr h).right np)
|
|||
|
| isTrue hp =>
|
|||
|
if hq : a = b then
|
|||
|
isTrue (eq_iff_snoc.mp $ And.intro hq hp)
|
|||
|
else
|
|||
|
isFalse (fun h => absurd (eq_iff_snoc.mpr h).left hq)
|
|||
|
|
|||
|
instance [DecidableEq α] : DecidableEq (LTuple α n) := LTuple.hasDecEq
|
|||
|
|
|||
|
-- ========================================
|
|||
|
-- Basic API
|
|||
|
-- ========================================
|
|||
|
|
|||
|
/--
|
|||
|
Returns the number of entries of the `Tuple`.
|
|||
|
-/
|
|||
|
def size (_ : LTuple α n) : Nat := n
|
|||
|
|
|||
|
/--
|
|||
|
Returns all but the last entry of the `Tuple`.
|
|||
|
-/
|
|||
|
def init : (t : LTuple α (n + 1)) → LTuple α n
|
|||
|
| snoc vs _ => vs
|
|||
|
|
|||
|
/--
|
|||
|
Returns the last entry of the `Tuple`.
|
|||
|
-/
|
|||
|
def last : LTuple α (n + 1) → α
|
|||
|
| snoc _ v => v
|
|||
|
|
|||
|
/--
|
|||
|
Prepends an entry to the start of the `Tuple`.
|
|||
|
-/
|
|||
|
def cons : LTuple α n → α → LTuple α (n + 1)
|
|||
|
| nil, a => snoc nil a
|
|||
|
| snoc ts t, a => snoc (cons ts a) t
|
|||
|
|
|||
|
-- ========================================
|
|||
|
-- Concatenation
|
|||
|
-- ========================================
|
|||
|
|
|||
|
/--
|
|||
|
Join two `Tuple`s together end to end.
|
|||
|
-/
|
|||
|
def concat : LTuple α m → LTuple α n → LTuple α (m + n)
|
|||
|
| is, nil => is
|
|||
|
| is, snoc ts t => snoc (concat is ts) t
|
|||
|
|
|||
|
/--
|
|||
|
Concatenating a `Tuple` with `nil` yields the original `Tuple`.
|
|||
|
-/
|
|||
|
theorem self_concat_nil_eq_self (t : LTuple α m) : concat t nil = t :=
|
|||
|
match t with
|
|||
|
| nil => rfl
|
|||
|
| snoc _ _ => rfl
|
|||
|
|
|||
|
/--
|
|||
|
Concatenating `nil` with a `Tuple` yields the `Tuple`.
|
|||
|
-/
|
|||
|
theorem nil_concat_self_eq_self (t : LTuple α m) : concat nil t = t := by
|
|||
|
induction t with
|
|||
|
| nil => unfold concat; simp
|
|||
|
| @snoc n as a ih =>
|
|||
|
unfold concat
|
|||
|
rw [ih]
|
|||
|
suffices HEq (snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a) ↑(snoc as a)
|
|||
|
from eq_of_heq this
|
|||
|
have h₁ := Eq.recOn
|
|||
|
(motive := fun x h => HEq
|
|||
|
(snoc (cast (show LTuple α n = LTuple α x by rw [h]) as) a)
|
|||
|
(snoc as a))
|
|||
|
(show n = 0 + n by simp)
|
|||
|
HEq.rfl
|
|||
|
exact Eq.recOn
|
|||
|
(motive := fun x h => HEq
|
|||
|
(snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a)
|
|||
|
(cast h (snoc as a)))
|
|||
|
(show LTuple α (n + 1) = LTuple α (0 + (n + 1)) by simp)
|
|||
|
h₁
|
|||
|
|
|||
|
/--
|
|||
|
Concatenating a `Tuple` to a nonempty `Tuple` moves `concat` calls closer to
|
|||
|
expression leaves.
|
|||
|
-/
|
|||
|
theorem concat_snoc_snoc_concat {bs : LTuple α n}
|
|||
|
: concat as (snoc bs b) = snoc (concat as bs) b :=
|
|||
|
rfl
|
|||
|
|
|||
|
/--
|
|||
|
`snoc` is equivalent to concatenating the `init` and `last` element together.
|
|||
|
-/
|
|||
|
theorem snoc_eq_init_concat_last (as : LTuple α m)
|
|||
|
: snoc as a = concat as (snoc nil a) := by
|
|||
|
cases as with
|
|||
|
| nil => rfl
|
|||
|
| snoc _ _ => simp; unfold concat concat; rfl
|
|||
|
|
|||
|
-- ========================================
|
|||
|
-- Initial sequences
|
|||
|
-- ========================================
|
|||
|
|
|||
|
/--
|
|||
|
Take the first `k` entries from the `Tuple` to form a new `Tuple`, or the entire
|
|||
|
`Tuple` if `k` exceeds the number of entries.
|
|||
|
-/
|
|||
|
def take (t : LTuple α n) (k : Nat) : LTuple α (min n k) :=
|
|||
|
if h : n ≤ k then
|
|||
|
cast (by rw [min_eq_left h]) t
|
|||
|
else
|
|||
|
match t with
|
|||
|
| nil => nil
|
|||
|
| @snoc _ n' as a => cast (by rw [min_lt_succ_eq h]) (take as k)
|
|||
|
where
|
|||
|
min_lt_succ_eq {m : Nat} (h : ¬m + 1 ≤ k) : min m k = min (m + 1) k := by
|
|||
|
have h' : k + 1 ≤ m + 1 := Nat.lt_of_not_le h
|
|||
|
simp at h'
|
|||
|
rw [min_eq_right h', min_eq_right (Nat.le_trans h' (Nat.le_succ m))]
|
|||
|
|
|||
|
/--
|
|||
|
Taking no entries from any `Tuple` should yield an empty one.
|
|||
|
-/
|
|||
|
theorem self_take_zero_eq_nil (t : LTuple α n) : take t 0 = @nil α := by
|
|||
|
induction t with
|
|||
|
| nil => simp; rfl
|
|||
|
| snoc as a ih => unfold take; simp; rw [ih]; simp
|
|||
|
|
|||
|
/--
|
|||
|
Taking any number of entries from an empty `Tuple` should yield an empty one.
|
|||
|
-/
|
|||
|
theorem nil_take_zero_eq_nil (k : Nat) : (take (@nil α) k) = @nil α := by
|
|||
|
cases k <;> (unfold take; simp)
|
|||
|
|
|||
|
/--
|
|||
|
Taking `n` entries from a `Tuple` of size `n` should yield the same `Tuple`.
|
|||
|
-/
|
|||
|
theorem self_take_size_eq_self (t : LTuple α n) : take t n = t := by
|
|||
|
cases t with
|
|||
|
| nil => simp; rfl
|
|||
|
| snoc as a => unfold take; simp
|
|||
|
|
|||
|
/--
|
|||
|
Taking all but the last entry of a `Tuple` is the same result, regardless of the
|
|||
|
value of the last entry.
|
|||
|
-/
|
|||
|
theorem take_subst_last {as : LTuple α n} (a₁ a₂ : α)
|
|||
|
: take (snoc as a₁) n = take (snoc as a₂) n := by
|
|||
|
unfold take
|
|||
|
simp
|
|||
|
|
|||
|
/--
|
|||
|
Taking `n` elements from a tuple of size `n + 1` is the same as invoking `init`.
|
|||
|
-/
|
|||
|
theorem init_eq_take_pred (t : LTuple α (n + 1)) : take t n = init t := by
|
|||
|
cases t with
|
|||
|
| snoc as a =>
|
|||
|
unfold init take
|
|||
|
simp
|
|||
|
rw [self_take_size_eq_self]
|
|||
|
simp
|
|||
|
|
|||
|
/--
|
|||
|
If two `Tuple`s are equal, then any initial sequences of those two `Tuple`s are
|
|||
|
also equal.
|
|||
|
-/
|
|||
|
theorem eq_tuple_eq_take {t₁ t₂ : LTuple α n}
|
|||
|
: (t₁ = t₂) → (t₁.take k = t₂.take k) := by
|
|||
|
intro h
|
|||
|
rw [h]
|
|||
|
|
|||
|
/--
|
|||
|
Given a `Tuple` of size `k`, concatenating an arbitrary `Tuple` and taking `k`
|
|||
|
elements yields the original `Tuple`.
|
|||
|
-/
|
|||
|
theorem eq_take_concat {t₁ : LTuple α m} {t₂ : LTuple α n}
|
|||
|
: take (concat t₁ t₂) m = t₁ := by
|
|||
|
induction t₂ with
|
|||
|
| nil =>
|
|||
|
simp
|
|||
|
rw [self_concat_nil_eq_self, self_take_size_eq_self]
|
|||
|
| @snoc n' as a ih =>
|
|||
|
simp
|
|||
|
rw [concat_snoc_snoc_concat]
|
|||
|
unfold take
|
|||
|
simp
|
|||
|
rw [ih]
|
|||
|
simp
|
|||
|
|
|||
|
end LTuple
|