bookshelf/OneVariableCalculus/Real/Set/Partition.lean

52 lines
1.4 KiB
Plaintext
Raw Normal View History

2023-04-20 19:19:56 +00:00
import Bookshelf.List.Basic
import Bookshelf.Real.Set.Interval
namespace Real
/--
A `Partition` is some finite subset of `[a, b]` containing points `a` and `b`.
It is assumed that the points of the `Partition` are distinct and sorted. The
use of a `List` ensures finite-ness.
-/
structure Partition where
xs : List
has_min_length : xs.length ≥ 2
sorted : ∀ x ∈ xs.pairwise (fun x₁ x₂ => x₁ < x₂), x
namespace Partition
lemma length_partition_gt_zero (p : Partition) : p.xs.length > 0 :=
calc p.xs.length
_ ≥ 2 := p.has_min_length
_ > 0 := by simp
/--
The left-most subdivision point of the `Partition`.
-/
2023-04-24 18:59:11 +00:00
def left (p : Partition) : :=
p.xs.head (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p))
/--
The right-most subdivision point of the `Partition`.
-/
2023-04-24 18:59:11 +00:00
def right (p : Partition) : :=
p.xs.getLast (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p))
/--
Define `∈` syntax for a `Partition`. We say a real is a member of a partition
provided it lies somewhere in closed interval `[a, b]`.
-/
instance : Membership Partition where
2023-04-24 18:59:11 +00:00
mem (x : ) (p : Partition) := p.left ≤ x ∧ x ≤ p.right
/--
Every subdivision point of a `Partition` is itself a member of the `Partition`.
-/
theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs)
: x ∈ p := by
sorry
end Partition
end Real