Finish defining step functions.
parent
677420afe0
commit
bf20a0cb2e
|
@ -28,4 +28,18 @@ def pairwise (xs : List α) (f : α → α → β) : List β :=
|
|||
| none => []
|
||||
| some ys => zipWith f xs ys
|
||||
|
||||
/--
|
||||
If `x` is a member of the pairwise'd list, there must exist two (adjacent)
|
||||
elements of the list, say `x₁` and `x₂`, such that `x = f x₁ x₂`.
|
||||
-/
|
||||
theorem mem_pairwise_imp_exists {xs : List α} (h : x ∈ xs.pairwise f)
|
||||
: ∃ x₁ x₂, x₁ ∈ xs ∧ x₂ ∈ xs ∧ x = f x₁ x₂ := by
|
||||
unfold pairwise at h
|
||||
cases h' : tail? xs with
|
||||
| none => rw [h'] at h; cases h
|
||||
| some ys =>
|
||||
rw [h'] at h
|
||||
simp only at h
|
||||
sorry
|
||||
|
||||
end List
|
|
@ -1,25 +1,34 @@
|
|||
import Mathlib.Data.Fin.Basic
|
||||
import Mathlib.Tactic.NormNum
|
||||
|
||||
import Bookshelf.Real.Basic
|
||||
import OneVariableCalculus.Real.Set.Partition
|
||||
|
||||
namespace Real.Function
|
||||
|
||||
open Partition
|
||||
|
||||
/--
|
||||
Any member of a subinterval of a partition `P` must also be a member of `P`.
|
||||
-/
|
||||
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
|
||||
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂)))
|
||||
(hy : y ∈ I) : y ∈ p := by
|
||||
unfold List.pairwise at hI
|
||||
have ⟨ys, hys⟩ : ∃ ys, List.tail? p.xs = some ys := sorry
|
||||
conv at hI => arg 2; rw [hys]; simp only
|
||||
sorry
|
||||
-- By definition, a partition must always have at least two points in the
|
||||
-- interval. We can disregard the empty case.
|
||||
cases h : p.xs with
|
||||
| nil => rw [h] at hI; cases hI
|
||||
| cons x ys =>
|
||||
have ⟨x₁, ⟨x₂, ⟨hx₁, ⟨hx₂, hI'⟩⟩⟩⟩ := List.mem_pairwise_imp_exists hI
|
||||
rw [hI'] at hy
|
||||
refine ⟨?_, ?_⟩
|
||||
· calc p.left
|
||||
_ ≤ x₁ := (subdivision_point_mem_partition hx₁).left
|
||||
_ ≤ y := le_of_lt hy.left
|
||||
· calc y
|
||||
_ ≤ x₂ := le_of_lt hy.right
|
||||
_ ≤ p.right := (subdivision_point_mem_partition hx₂).right
|
||||
|
||||
/--
|
||||
A `Step` function is a function `f` along with a proof of the existence of some
|
||||
partition `P` such that `f` is constant on every open subinterval of `P`.
|
||||
A function `f` is a `Step` function if there exists a `Partition` `p` such that
|
||||
`f` is constant on every open subinterval of `p`.
|
||||
-/
|
||||
structure Step where
|
||||
p : Partition
|
||||
|
@ -31,8 +40,12 @@ structure Step where
|
|||
|
||||
namespace Step
|
||||
|
||||
/--
|
||||
The set definition of a `Step` function is the region between the constant
|
||||
values of the function's subintervals and the real axis.
|
||||
-/
|
||||
def set_def (f : Step) : Set ℝ² := sorry
|
||||
|
||||
-- TODO: Fill out
|
||||
end Step
|
||||
|
||||
end Real.Function.Step
|
||||
end Real.Function
|
|
@ -102,9 +102,16 @@ abbrev LineSegment := Subtype (fun r : Rectangle =>
|
|||
|
||||
namespace LineSegment
|
||||
|
||||
/--
|
||||
A `LineSegment` `s` is the set of points corresponding to the shortest line
|
||||
segment joining the two distinct points of `s`.
|
||||
-/
|
||||
def set_def (s : LineSegment) : Set ℝ² :=
|
||||
sorry
|
||||
|
||||
/--
|
||||
Either the width or height of a `LineSegment` is zero.
|
||||
-/
|
||||
theorem width_or_height_eq_zero (s : LineSegment)
|
||||
: s.val.width = 0 ∨ s.val.height = 0 := by
|
||||
apply Or.elim s.property
|
||||
|
|
|
@ -24,13 +24,13 @@ lemma length_partition_gt_zero (p : Partition) : p.xs.length > 0 :=
|
|||
/--
|
||||
The left-most subdivision point of the `Partition`.
|
||||
-/
|
||||
def a (p : Partition) : ℝ :=
|
||||
def left (p : Partition) : ℝ :=
|
||||
p.xs.head (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p))
|
||||
|
||||
/--
|
||||
The right-most subdivision point of the `Partition`.
|
||||
-/
|
||||
def b (p : Partition) : ℝ :=
|
||||
def right (p : Partition) : ℝ :=
|
||||
p.xs.getLast (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p))
|
||||
|
||||
/--
|
||||
|
@ -38,7 +38,14 @@ Define `∈` syntax for a `Partition`. We say a real is a member of a partition
|
|||
provided it lies somewhere in closed interval `[a, b]`.
|
||||
-/
|
||||
instance : Membership ℝ Partition where
|
||||
mem (x : ℝ) (p : Partition) := p.a ≤ x ∧ x ≤ p.b
|
||||
mem (x : ℝ) (p : Partition) := p.left ≤ x ∧ x ≤ p.right
|
||||
|
||||
/--
|
||||
Every subdivision point of a `Partition` is itself a member of the `Partition`.
|
||||
-/
|
||||
theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs)
|
||||
: x ∈ p := by
|
||||
sorry
|
||||
|
||||
end Partition
|
||||
|
||||
|
|
Loading…
Reference in New Issue