Finish defining step functions.

finite-set-exercises
Joshua Potter 2023-04-24 12:59:11 -06:00
parent 677420afe0
commit bf20a0cb2e
4 changed files with 55 additions and 14 deletions

View File

@ -28,4 +28,18 @@ def pairwise (xs : List α) (f : αα → β) : List β :=
| none => []
| some ys => zipWith f xs ys
/--
If `x` is a member of the pairwise'd list, there must exist two (adjacent)
elements of the list, say `x₁` and `x₂`, such that `x = f x₁ x₂`.
-/
theorem mem_pairwise_imp_exists {xs : List α} (h : x ∈ xs.pairwise f)
: ∃ x₁ x₂, x₁ ∈ xs ∧ x₂ ∈ xs ∧ x = f x₁ x₂ := by
unfold pairwise at h
cases h' : tail? xs with
| none => rw [h'] at h; cases h
| some ys =>
rw [h'] at h
simp only at h
sorry
end List

View File

@ -1,25 +1,34 @@
import Mathlib.Data.Fin.Basic
import Mathlib.Tactic.NormNum
import Bookshelf.Real.Basic
import OneVariableCalculus.Real.Set.Partition
namespace Real.Function
open Partition
/--
Any member of a subinterval of a partition `P` must also be a member of `P`.
-/
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂)))
(hy : y ∈ I) : y ∈ p := by
unfold List.pairwise at hI
have ⟨ys, hys⟩ : ∃ ys, List.tail? p.xs = some ys := sorry
conv at hI => arg 2; rw [hys]; simp only
sorry
-- By definition, a partition must always have at least two points in the
-- interval. We can disregard the empty case.
cases h : p.xs with
| nil => rw [h] at hI; cases hI
| cons x ys =>
have ⟨x₁, ⟨x₂, ⟨hx₁, ⟨hx₂, hI'⟩⟩⟩⟩ := List.mem_pairwise_imp_exists hI
rw [hI'] at hy
refine ⟨?_, ?_⟩
· calc p.left
_ ≤ x₁ := (subdivision_point_mem_partition hx₁).left
_ ≤ y := le_of_lt hy.left
· calc y
_ ≤ x₂ := le_of_lt hy.right
_ ≤ p.right := (subdivision_point_mem_partition hx₂).right
/--
A `Step` function is a function `f` along with a proof of the existence of some
partition `P` such that `f` is constant on every open subinterval of `P`.
A function `f` is a `Step` function if there exists a `Partition` `p` such that
`f` is constant on every open subinterval of `p`.
-/
structure Step where
p : Partition
@ -31,8 +40,12 @@ structure Step where
namespace Step
/--
The set definition of a `Step` function is the region between the constant
values of the function's subintervals and the real axis.
-/
def set_def (f : Step) : Set ℝ² := sorry
-- TODO: Fill out
end Step
end Real.Function.Step
end Real.Function

View File

@ -102,9 +102,16 @@ abbrev LineSegment := Subtype (fun r : Rectangle =>
namespace LineSegment
/--
A `LineSegment` `s` is the set of points corresponding to the shortest line
segment joining the two distinct points of `s`.
-/
def set_def (s : LineSegment) : Set ℝ² :=
sorry
/--
Either the width or height of a `LineSegment` is zero.
-/
theorem width_or_height_eq_zero (s : LineSegment)
: s.val.width = 0 s.val.height = 0 := by
apply Or.elim s.property

View File

@ -24,13 +24,13 @@ lemma length_partition_gt_zero (p : Partition) : p.xs.length > 0 :=
/--
The left-most subdivision point of the `Partition`.
-/
def a (p : Partition) : :=
def left (p : Partition) : :=
p.xs.head (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p))
/--
The right-most subdivision point of the `Partition`.
-/
def b (p : Partition) : :=
def right (p : Partition) : :=
p.xs.getLast (List.length_gt_zero_imp_not_nil (length_partition_gt_zero p))
/--
@ -38,7 +38,14 @@ Define `∈` syntax for a `Partition`. We say a real is a member of a partition
provided it lies somewhere in closed interval `[a, b]`.
-/
instance : Membership Partition where
mem (x : ) (p : Partition) := p.a ≤ x ∧ x ≤ p.b
mem (x : ) (p : Partition) := p.left ≤ x ∧ x ≤ p.right
/--
Every subdivision point of a `Partition` is itself a member of the `Partition`.
-/
theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs)
: x ∈ p := by
sorry
end Partition