98 lines
2.3 KiB
TeX
98 lines
2.3 KiB
TeX
|
\documentclass{article}
|
||
|
|
||
|
\input{../../preamble}
|
||
|
|
||
|
\newcommand{\link}[2]{\lean{../..}
|
||
|
{Common/Real/Geometry/Area} % Location
|
||
|
{#1} % Fragment
|
||
|
{#2} % Presentation
|
||
|
}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\header{Axiomatic Framework of Area}{Tom M. Apostol}
|
||
|
|
||
|
We assume there exists a class $\mathscr{M}$ of measurable sets in the plane and
|
||
|
a set function $a$, whose domain is $\mathscr{M}$, with the following
|
||
|
properties:
|
||
|
|
||
|
\section*{\verified{Nonnegative Property}}%
|
||
|
\hyperlabel{sec:nonnegative-property}%
|
||
|
|
||
|
For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
|
||
|
|
||
|
\begin{axiom}
|
||
|
|
||
|
\link{Nonnegative-Property}{Nonnegative Property}
|
||
|
|
||
|
\end{axiom}
|
||
|
|
||
|
\section*{\verified{Additive Property}}%
|
||
|
\hyperlabel{sec:additive-property}%
|
||
|
|
||
|
If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
|
||
|
$\mathscr{M}$, and we have $a(S \cup T) = a(S) + a(T) - a(S \cap T)$.
|
||
|
|
||
|
\begin{axiom}
|
||
|
|
||
|
\link{Additive-Property}{Additive Property}
|
||
|
|
||
|
\end{axiom}
|
||
|
|
||
|
\section*{\verified{Difference Property}}%
|
||
|
\hyperlabel{sec:difference-property}%
|
||
|
|
||
|
If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
|
||
|
$\mathscr{M}$, and we have $a(T - S) = a(T) - a(S)$.
|
||
|
|
||
|
\begin{axiom}
|
||
|
|
||
|
\link{Difference-Property}{Difference Property}
|
||
|
|
||
|
\end{axiom}
|
||
|
|
||
|
\section*{\verified{Invariance Under Congruence}}%
|
||
|
\hyperlabel{sec:invariance-under-congruence}%
|
||
|
|
||
|
If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
|
||
|
also in $\mathscr{M}$ and we have $a(S) = a(T)$.
|
||
|
|
||
|
\begin{axiom}
|
||
|
|
||
|
\link{Invariant-Under-Congruence}{Invariance Under Congruence}
|
||
|
|
||
|
\end{axiom}
|
||
|
|
||
|
\section*{\verified{Choice of Scale}}%
|
||
|
\label{sec:choice-scale}
|
||
|
|
||
|
Every rectangle $R$ is in $\mathscr{M}$.
|
||
|
If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
|
||
|
|
||
|
\begin{axiom}
|
||
|
|
||
|
\link{Choice-of-Scale}{Choice of Scale}
|
||
|
|
||
|
\end{axiom}
|
||
|
|
||
|
\section*{\proceeding{Exhaustion Property}}%
|
||
|
\hyperlabel{sec:exhaustion-property}%
|
||
|
|
||
|
Let $Q$ be a set that can be enclosed between two step regions $S$ and $T$, so
|
||
|
that
|
||
|
\begin{equation}
|
||
|
\label{sec:exhaustion-property-eq1}
|
||
|
S \subseteq Q \subseteq T.
|
||
|
\end{equation}
|
||
|
If there is one and only one number $c$ which satisfies the inequalities
|
||
|
$$a(S) \leq c \leq a(T)$$ for all step regions $S$ and $T$ satisfying (1.1),
|
||
|
then $Q$ is measurable and $a(Q) = c$.
|
||
|
|
||
|
\begin{axiom}
|
||
|
|
||
|
\link{Exhaustion-Property}{Exhaustion Property}
|
||
|
|
||
|
\end{axiom}
|
||
|
|
||
|
\end{document}
|