Add TeX for axiomatic area definition.

finite-set-exercises
Joshua Potter 2023-05-10 17:41:29 -06:00
parent c5e28d252f
commit 8c5029f8ec
7 changed files with 108 additions and 8 deletions

View File

@ -4,7 +4,7 @@
\newcommand{\link}[1]{\lean{../..}
{Bookshelf/Apostol/Chapter\_1\_11} % Location
{Apostol.Chapter\_1\_11.#1} % Namespace
{Apostol.Chapter\_1\_11.#1} % Fragment
{Chapter\_1\_11.#1} % Presentation
}

View File

@ -4,7 +4,7 @@
\newcommand{\link}[1]{\lean{../..}
{Bookshelf/Apostol/Chapter\_I\_03} % Location
{Apostol.Chapter\_I\_03.#1} % Namespace
{Apostol.Chapter\_I\_03.#1} % Fragment
{Chapter\_I\_03.#1} % Presentation
}

View File

@ -3,9 +3,9 @@
\input{../../preamble}
\newcommand{\link}[1]{\lean{../..}
{Bookshelf/Enderton/Chapter_0} % Location
{Enderton.Chapter_0.#1} % Namespace
{Chapter_0.#1} % Presentation
{Bookshelf/Enderton/Chapter\_0} % Location
{Enderton.Chapter\_0.#1} % Fragment
{Chapter\_0.#1} % Presentation
}
\begin{document}

View File

@ -0,0 +1,97 @@
\documentclass{article}
\input{../../preamble}
\newcommand{\link}[2]{\lean{../..}
{Common/Real/Geometry/Area} % Location
{#1} % Fragment
{#2} % Presentation
}
\begin{document}
\header{Axiomatic Framework of Area}{Tom M. Apostol}
We assume there exists a class $\mathscr{M}$ of measurable sets in the plane and
a set function $a$, whose domain is $\mathscr{M}$, with the following
properties:
\section*{\verified{Nonnegative Property}}%
\hyperlabel{sec:nonnegative-property}%
For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
\begin{axiom}
\link{Nonnegative-Property}{Nonnegative Property}
\end{axiom}
\section*{\verified{Additive Property}}%
\hyperlabel{sec:additive-property}%
If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
$\mathscr{M}$, and we have $a(S \cup T) = a(S) + a(T) - a(S \cap T)$.
\begin{axiom}
\link{Additive-Property}{Additive Property}
\end{axiom}
\section*{\verified{Difference Property}}%
\hyperlabel{sec:difference-property}%
If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
$\mathscr{M}$, and we have $a(T - S) = a(T) - a(S)$.
\begin{axiom}
\link{Difference-Property}{Difference Property}
\end{axiom}
\section*{\verified{Invariance Under Congruence}}%
\hyperlabel{sec:invariance-under-congruence}%
If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
also in $\mathscr{M}$ and we have $a(S) = a(T)$.
\begin{axiom}
\link{Invariant-Under-Congruence}{Invariance Under Congruence}
\end{axiom}
\section*{\verified{Choice of Scale}}%
\label{sec:choice-scale}
Every rectangle $R$ is in $\mathscr{M}$.
If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
\begin{axiom}
\link{Choice-of-Scale}{Choice of Scale}
\end{axiom}
\section*{\proceeding{Exhaustion Property}}%
\hyperlabel{sec:exhaustion-property}%
Let $Q$ be a set that can be enclosed between two step regions $S$ and $T$, so
that
\begin{equation}
\label{sec:exhaustion-property-eq1}
S \subseteq Q \subseteq T.
\end{equation}
If there is one and only one number $c$ which satisfies the inequalities
$$a(S) \leq c \leq a(T)$$ for all step regions $S$ and $T$ satisfying (1.1),
then $Q$ is measurable and $a(Q) = c$.
\begin{axiom}
\link{Exhaustion-Property}{Exhaustion Property}
\end{axiom}
\end{document}

View File

@ -4,7 +4,7 @@
\newcommand{\link}[1]{\lean{../../..}
{Common/Real/Sequence/Arithmetic} % Location
{Real.Arithmetic.#1} % Namespace
{Real.Arithmetic.#1} % Fragment
{Real.Arithmetic.#1} % Presentation
}

View File

@ -4,7 +4,7 @@
\newcommand{\link}[1]{\lean{../../..}
{Common/Real/Sequence/Geometric} % Location
{Real.Geometric.#1} % Namespace
{Real.Geometric.#1} % Fragment
{Real.Geometric.#1} % Presentation
}

View File

@ -17,7 +17,7 @@
% the root of the workspace (i.e. where this `preamble.tex` file is located).
% #1 - Path to root
% #2 - Location
% #3 - Namespace
% #3 - Fragment
% #4 - Presentation
\newcommand{\lean}[4]{\href{#1/#2.html\##3}{#4}}
\newcommand{\hyperlabel}[1]{%
@ -28,6 +28,9 @@
% Environments
% ========================================
\newenvironment{axiom}{%
\paragraph{\normalfont\normalsize\textit{Axiom.}}}
{\hfill$\square$}
\newcommand{\divider}{%
\vspace{10pt}
\hrule