Add TeX for axiomatic area definition.
parent
c5e28d252f
commit
8c5029f8ec
|
@ -4,7 +4,7 @@
|
|||
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Bookshelf/Apostol/Chapter\_1\_11} % Location
|
||||
{Apostol.Chapter\_1\_11.#1} % Namespace
|
||||
{Apostol.Chapter\_1\_11.#1} % Fragment
|
||||
{Chapter\_1\_11.#1} % Presentation
|
||||
}
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Bookshelf/Apostol/Chapter\_I\_03} % Location
|
||||
{Apostol.Chapter\_I\_03.#1} % Namespace
|
||||
{Apostol.Chapter\_I\_03.#1} % Fragment
|
||||
{Chapter\_I\_03.#1} % Presentation
|
||||
}
|
||||
|
||||
|
|
|
@ -3,9 +3,9 @@
|
|||
\input{../../preamble}
|
||||
|
||||
\newcommand{\link}[1]{\lean{../..}
|
||||
{Bookshelf/Enderton/Chapter_0} % Location
|
||||
{Enderton.Chapter_0.#1} % Namespace
|
||||
{Chapter_0.#1} % Presentation
|
||||
{Bookshelf/Enderton/Chapter\_0} % Location
|
||||
{Enderton.Chapter\_0.#1} % Fragment
|
||||
{Chapter\_0.#1} % Presentation
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
|
|
@ -0,0 +1,97 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../../preamble}
|
||||
|
||||
\newcommand{\link}[2]{\lean{../..}
|
||||
{Common/Real/Geometry/Area} % Location
|
||||
{#1} % Fragment
|
||||
{#2} % Presentation
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\header{Axiomatic Framework of Area}{Tom M. Apostol}
|
||||
|
||||
We assume there exists a class $\mathscr{M}$ of measurable sets in the plane and
|
||||
a set function $a$, whose domain is $\mathscr{M}$, with the following
|
||||
properties:
|
||||
|
||||
\section*{\verified{Nonnegative Property}}%
|
||||
\hyperlabel{sec:nonnegative-property}%
|
||||
|
||||
For each set $S$ in $\mathscr{M}$, we have $a(S) \geq 0$.
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
\link{Nonnegative-Property}{Nonnegative Property}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Additive Property}}%
|
||||
\hyperlabel{sec:additive-property}%
|
||||
|
||||
If $S$ and $T$ are in $\mathscr{M}$, then $S \cup T$ and $S \cap T$ are in
|
||||
$\mathscr{M}$, and we have $a(S \cup T) = a(S) + a(T) - a(S \cap T)$.
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
\link{Additive-Property}{Additive Property}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Difference Property}}%
|
||||
\hyperlabel{sec:difference-property}%
|
||||
|
||||
If $S$ and $T$ are in $\mathscr{M}$ with $S \subseteq T$, then $T - S$ is in
|
||||
$\mathscr{M}$, and we have $a(T - S) = a(T) - a(S)$.
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
\link{Difference-Property}{Difference Property}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Invariance Under Congruence}}%
|
||||
\hyperlabel{sec:invariance-under-congruence}%
|
||||
|
||||
If a set $S$ is in $\mathscr{M}$ and if $T$ is congruent to $S$, then $T$ is
|
||||
also in $\mathscr{M}$ and we have $a(S) = a(T)$.
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
\link{Invariant-Under-Congruence}{Invariance Under Congruence}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\verified{Choice of Scale}}%
|
||||
\label{sec:choice-scale}
|
||||
|
||||
Every rectangle $R$ is in $\mathscr{M}$.
|
||||
If the edges of $R$ have lengths $h$ and $k$, then $a(R) = hk$.
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
\link{Choice-of-Scale}{Choice of Scale}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\section*{\proceeding{Exhaustion Property}}%
|
||||
\hyperlabel{sec:exhaustion-property}%
|
||||
|
||||
Let $Q$ be a set that can be enclosed between two step regions $S$ and $T$, so
|
||||
that
|
||||
\begin{equation}
|
||||
\label{sec:exhaustion-property-eq1}
|
||||
S \subseteq Q \subseteq T.
|
||||
\end{equation}
|
||||
If there is one and only one number $c$ which satisfies the inequalities
|
||||
$$a(S) \leq c \leq a(T)$$ for all step regions $S$ and $T$ satisfying (1.1),
|
||||
then $Q$ is measurable and $a(Q) = c$.
|
||||
|
||||
\begin{axiom}
|
||||
|
||||
\link{Exhaustion-Property}{Exhaustion Property}
|
||||
|
||||
\end{axiom}
|
||||
|
||||
\end{document}
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
\newcommand{\link}[1]{\lean{../../..}
|
||||
{Common/Real/Sequence/Arithmetic} % Location
|
||||
{Real.Arithmetic.#1} % Namespace
|
||||
{Real.Arithmetic.#1} % Fragment
|
||||
{Real.Arithmetic.#1} % Presentation
|
||||
}
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
\newcommand{\link}[1]{\lean{../../..}
|
||||
{Common/Real/Sequence/Geometric} % Location
|
||||
{Real.Geometric.#1} % Namespace
|
||||
{Real.Geometric.#1} % Fragment
|
||||
{Real.Geometric.#1} % Presentation
|
||||
}
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
% the root of the workspace (i.e. where this `preamble.tex` file is located).
|
||||
% #1 - Path to root
|
||||
% #2 - Location
|
||||
% #3 - Namespace
|
||||
% #3 - Fragment
|
||||
% #4 - Presentation
|
||||
\newcommand{\lean}[4]{\href{#1/#2.html\##3}{#4}}
|
||||
\newcommand{\hyperlabel}[1]{%
|
||||
|
@ -28,6 +28,9 @@
|
|||
% Environments
|
||||
% ========================================
|
||||
|
||||
\newenvironment{axiom}{%
|
||||
\paragraph{\normalfont\normalsize\textit{Axiom.}}}
|
||||
{\hfill$\square$}
|
||||
\newcommand{\divider}{%
|
||||
\vspace{10pt}
|
||||
\hrule
|
||||
|
|
Loading…
Reference in New Issue