2023-04-11 12:46:59 +00:00
|
|
|
\documentclass{article}
|
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\input{preamble}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\newcommand{\linkA}[1]{\href{/doc/Bookshelf/Real/Sequence/Arithmetic.html\##1}{#1}}
|
|
|
|
\newcommand{\linkG}[1]{\href{/doc/Bookshelf/Real/Sequence/Geometric.html\##1}{#1}}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\begin{document}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\section*{Sum of Arithmetic Series}%
|
|
|
|
\label{sec:sum-arithmetic-series}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
|
|
|
Then for some $n \in \mathbb{N}$,
|
|
|
|
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
|
2023-04-11 12:46:59 +00:00
|
|
|
|
|
|
|
\begin{proof}
|
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\linkA{Real.Arithmetic.sum\_recursive\_closed}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\section*{Sum of Geometric Series}%
|
|
|
|
\label{sec:sum-geometric-series}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
|
|
|
Then for some $n \in \mathbb{N}$,
|
|
|
|
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
2023-04-11 12:46:59 +00:00
|
|
|
|
|
|
|
\begin{proof}
|
|
|
|
|
2023-05-03 23:26:45 +00:00
|
|
|
\linkG{Real.Geometric.sum\_recursive\_closed}
|
2023-04-11 12:46:59 +00:00
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\end{document}
|