\documentclass{article} \input{preamble} \newcommand{\linkA}[1]{\href{/doc/Bookshelf/Real/Sequence/Arithmetic.html\##1}{#1}} \newcommand{\linkG}[1]{\href{/doc/Bookshelf/Real/Sequence/Geometric.html\##1}{#1}} \begin{document} \section*{Sum of Arithmetic Series}% \label{sec:sum-arithmetic-series} Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$. Then for some $n \in \mathbb{N}$, $$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$ \begin{proof} \linkA{Real.Arithmetic.sum\_recursive\_closed} \end{proof} \section*{Sum of Geometric Series}% \label{sec:sum-geometric-series} Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$. Then for some $n \in \mathbb{N}$, $$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$ \begin{proof} \linkG{Real.Geometric.sum\_recursive\_closed} \end{proof} \end{document}