--- title: Induction TARGET DECK: Obsidian::STEM FILE TAGS: algebra::sequence proof tags: - proof - sequence --- ## Overview %%ANKI Cloze The {base case} is to induction whereas {initial conditions} are to recursive definitions. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Cloze The {inductive case} is to induction whereas {recurrence relations} are to recursive definitions. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What standard names are given to the cases in an induction proof? Back: The base case and inductive case. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 0} = P(n)$ and $P(n) \Leftrightarrow n \geq 2$. How is $(a_n)$ written with terms expanded? Back: $F$, $F$, $F$, $T$, $T$, $\ldots$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic If proving $P(n)$ by weak induction, what are the first five terms of the underlying sequence? Back: $P(0)$, $P(1)$, $P(2)$, $P(3)$, $P(4)$, $\ldots$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What proposition is typically proven in the base case of an inductive proof? Back: $P(n_0)$ for some $n_0 \geq 0$. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What proposition is typically proven in the inductive case of an inductive proof? Back: $P(k) \Rightarrow P(k + 1)$ for all $k \geq n_0$. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic In weak induction, what special name is given to the antecedent of $P(k) \Rightarrow P(k + 1)$? Back: The inductive hypothesis. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Cloze {Closed forms} are to recursive definitions as {direct} is to proofs. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Cloze {Recurrence relations} are to recursive definitions as {induction} is to proofs. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What proof strategy is most directly tied to recursion? Back: Induction. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Using typical identifiers, what is the inductive hypothesis of $P(n)$ using weak induction? Back: Assume $P(k)$ for some $k \geq n_0$. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Using typical identifiers, what is the inductive hypothesis of $P(n)$ using strong induction? Back: Assume $P(k)$ for all $k < n$. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Why is strong induction considered stronger than weak induction? Back: It can be used to solve at least the same set of problems weak induction can. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What contradiction is introduced to explain why the strong induction assumption is valid? Back: If $P(n)$ is not true for all $n$, there exists a *first* $n_0$ for which $\neg P(n_0)$. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What distinguishes the base case of weak and strong induction proofs? Back: The latter may have more than one base case. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% ## Bibliography * Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).