--- title: Order of Growth TARGET DECK: Obsidian::STEM FILE TAGS: algorithm::complexity tags: - algorithm - complexity --- ## Overview The **running time** of an algorithm is usually considered as a function of its **input size**. How input size is measured depends on the problem at hand. For instance, [[algorithms/sorting/index|sorting]] algorithms have an input size corresponding to the number of elements to sort. %%ANKI Basic What is the input of a function used to measure a program's running time? Back: The size of the program's input. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How do you determine the input size used to measure an algorithm's running time? Back: This depends entirely on the specific problem/algorithm. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What *concrete* measure is typically used to measure running time? Back: The number of primitive operations executed. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What *abstract* measure is typically used to measure running time? Back: It's order of growth. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Why does Cormen et al. state the scope of average-case analysis is limited? Back: What constitutes an "average" input isn't always clear. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What about running time are algorithm designers mostly interested in? Back: It's order of growth. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does order of growth relate to running time? Back: Order of growth measures how quickly running time grows with respect to input size. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Why are lower-ordered terms ignored when determining order of growth? Back: They become less significant as input size grows. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Why are leading coefficients ignored when determining order of growth? Back: They become less significant as input size grows. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Polynomials describing order of growth usually have what two parts ignored? Back: Coefficients and lower-ordered terms. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How do we simplify $\Theta(an^2 + bn + c)$? Back: As $\Theta(n^2)$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Explain why asymptotic notation is useful for *both* running times and space usage. Back: Asymptotic notation represents functions in a general sense. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Which* running time are algorithm designers typically concerned with? Back: Worst-case running time. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In asymptotic notation, how is constant space usage denoted? Back: Space usage is $O(1)$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How could we replace equality $f(n) = \Theta(g(n))$ to be less "abusive"? Back: Replace $=$ with $\in$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is equality abused in $f(n) = \Theta(g(n))$? Back: Here $=$ actually refers to set membership. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How could we replace $1$ in $\Theta(1)$ to be less "abusive"? Back: Replace $1$ with $n^0$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* does Cormen et al. consider $\Theta(1)$ to be a minor abuse? Back: This expression does not indicate what variable is tending to infinity. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI What does it mean for function $f(n)$ to be asymptotically nonnegative? Back: $f(n) \geq 0$ whenever $n$ is sufficiently large. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for function $f(n)$ to be asymptotically positive? Back: $f(n) > 0$ whenever $n$ is sufficiently large. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% When encountering equations with asymptotic notation on both sides of the equality, we interpret the equation using the following rule: > No matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid. For example, $2n^2 + \Theta(n) = \Theta(n^2)$ states that for all $f(n) \in \Theta(n)$, there exists some $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$. %%ANKI Basic Asymptotic notation on the RHS of an equation is a stand in for what? Back: *Some* function in the set that satisfies the equation. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Asymptotic notation on the LHS of an equation is a stand in for what? Back: *Any* function in the set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze In equations containing asymptotic notation, {1:LHS} is to {1:$\forall$} whereas {2:RHS} is to {2:$\exists$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $2n^2 + \Theta(n) = \Theta(n^2)$ written in propositional logic? Back: $\forall f(n) \in \Theta(n), \exists g(n) \in \Theta(n^2), 2n^2 + f(n) = g(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* is $\sum_{i=1}^n O(i) \neq O(1) + O(2) + \cdots + O(n)$? Back: The number of anonymous functions is equal to the number of times the asymptotic notation appears. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## Θ-notation ![[theta-notation.png]] $\Theta$-notation refers to a strict lower- and upper-bound. It is defined as set $$\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2, n_0 > 0, \forall n \geq n_0, 0 \leq c_1g(x) \leq f(n) \leq c_2g(n) \}$$ %%ANKI Basic What kind of mathematical object is $\Theta(g(n))$? Back: A set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers found in $\Theta(g(n))$, what values do $c_1$, $c_2$, and $n_0$ take on? Back: Positive constants. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What names are usually given to the existentially quantified identifers in $\Theta(g(n))$'s definition? Back: $c_1$, $c_2$, and $n_0$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What name is usually given to the universally quantified identifer in $\Theta(g(n))$'s definition? Back: $n$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Using typical identifiers, $f(n) = \Theta(g(n))$ satisfies {$0$} $\leq$ {$c_1g(n)$} $\leq$ {$f(n)$} $\leq$ {$c_2g(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the lower bound of $c_1g(n)$ in $\Theta(g(n))$? Back: $0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the upper bound of $c_1g(n)$ in the definition of $\Theta(g(n))$? Back: $f(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the lower bound of $f(n)$ in the definition of $\Theta(g(n))$? Back: $c_1g(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the upper bound of $f(n)$ in the definition of $\Theta(g(n))$? Back: $c_2g(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the lower bound of $c_2g(n)$ in $\Theta(g(n))$? Back: $f(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the upper bound of $c_2g(n)$ in $\Theta(g(n))$? Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Given $f(n) = \Theta(g(n))$, we say {1:$g(n)$} is an asymptotic {2:tight} bound for {1:$f(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which notation corresponds to asymptotic tight bounds? Back: $\Theta$-notation. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Every member of $\Theta(g(n))$ is expected to be asymptotically what? Back: Nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $g(n)$ satisfy such that $\Theta(g(n))$ is nonempty? Back: $g(n)$ must be asymptotically nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does $\Theta(-n)$ evaluate to? Back: $\varnothing$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* is it $\Theta(-n) = \varnothing$? Back: Because $-n$ is not asymptotically nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $\Theta(g(n))$ defined? Back: $\{ f(n) \mid \exists c_1, c_2, n_0 > 0, \forall n \geq n_0, 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using the typical identifiers, what values of $n$ are in the matrix of $\Theta(g(n))$'s definition? Back: $n \geq n_0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which asymptotic notation is this image demonstrating? ![[theta-notation.png]] Back: $\Theta$-notation Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic For $n < n_0$, what values does the $y$-axis take on? ![[theta-notation.png]] Back: Indeterminate. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic For $n \geq n_0$, what values does the $y$-axis take on? ![[theta-notation.png]] Back: Nonnegative values. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transitive property of $\Theta$-notation? Back: $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the reflexive property of $\Theta$-notation? Back: $f(n) = \Theta(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $f(n)$ satisfy for equality $f(n) = \Theta(f(n))$ to hold? Back: $f(n)$ must be nonnegatively asymptotic. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* must $f(n)$ be nonnegatively asymptotic for $f(n) = \Theta(f(n))$ to hold? Back: Otherwise $\Theta(f(n))$ is the empty set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the symmetric property of $\Theta$-notation? Back: $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transpose symmetric property of $\Theta$-notation? Back: N/A. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic $\Theta$-notation is likened to what comparison operator of real numbers? Back: $=$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## $O$-notation ![[big-o-notation.png]] $O$-notation refers to a strict upper-bound. It is defined as set $$O(g(n)) = \{ f(n) \mid \exists c, n_0 > 0, \forall n \geq n_0, 0 \leq f(n) \leq cg(n) \}$$ %%ANKI Basic What kind of mathematical object is $O(g(n))$? Back: A set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers found in $O(g(n))$, what values do $c$ and $n_0$ take on? Back: Positive constants. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What names are usually given to the existentially quantified identifers in $O(g(n))$'s definition? Back: $c$ and $n_0$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What name is usually given to the universally quantified identifer in $O(g(n))$'s definition? Back: $n$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Using typical identifiers, $f(n) = O(g(n))$ satisfies {$0$} $\leq$ {$f(n)$} $\leq$ {$cg(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the lower bound of $cg(n)$ in $O(g(n))$? Back: $f(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the upper bound of $cg(n)$ in $O(g(n))$? Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the lower bound of $f(n)$ in $O(g(n))$? Back: $0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the upper bound of $f(n)$ in $O(g(n))$? Back: $cg(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Given $f(n) = O(g(n))$, we say {1:$g(n)$} is an asymptotic {2:upper} bound for {1:$f(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which notation corresponds to (potentially tight) asymptotic upper bounds? Back: $O$-notation. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Every member of $O(g(n))$ is expected to be asymptotically what? Back: Nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $g(n)$ satisfy such that $O(g(n))$ is nonempty? Back: $g(n)$ must be asymptotically nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $O(g(n))$ defined? Back: $\{ f(n) \mid \exists c, n_0 > 0, \forall n \geq n_0, 0 \leq f(n) \leq cg(n) \}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which asymptotic notation is this image demonstrating? ![[big-o-notation.png]] Back: $O$-notation Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic When is it guaranteed $y$-values are nonnegative in the following? ![[big-o-notation.png]] Back: When $n \geq n_0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In set-theoretic notation, what does it mean for $\Theta$-notation to be stronger than $O$-notation? Back: $\Theta(g(n)) \subseteq O(g(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What notation corresponds to worst-case running times? Back: $O$-notation Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Why does Cormen et al. say "insertion sort's running time is $O(n^2)$" is an abuse of notation? Back: Because technically its running time depends on the particular input of size $n$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transitive property of $O$-notation? Back: $f(n) = O(g(n))$ and $g(n) = O(h(n))$ implies $f(n) = O(h(n))$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the reflexive property of $O$-notation? Back: $f(n) = O(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $f(n)$ satisfy for equality $f(n) = O(f(n))$ to hold? Back: $f(n)$ must be nonnegatively asymptotic. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* must $f(n)$ be nonnegatively asymptotic for $f(n) = O(f(n))$ to hold? Back: Otherwise $O(f(n))$ is the empty set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the symmetric property of $O$-notation? Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transpose symmetric property of $O$-notation? Back: $f(n) = O(g(n))$ iff $g(n) = \Omega(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic $O$-notation is likened to what comparison operator of real numbers? Back: $\leq$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## $o$-notation $o$-notation refers to an upper bound that is not asymptotically tight. It is defined as set $$o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \geq n_0, 0 \leq f(n) < cg(n) \}$$ %%ANKI Basic What kind of mathematical object is $o(g(n))$? Back: A set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers found in $o(g(n))$, what values do $c$ and $n_0$ take on? Back: Positive constants. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What names are usually given to the existentially quantified identifers in $o(g(n))$'s definition? Back: $n_0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What names are usually given to the universally quantified identifers in $o(g(n))$'s definition? Back: $c$ and $n$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Using typical identifiers, $f(n) = o(g(n))$ satisfies {$0$} $\leq$ {$f(n)$} $<$ {$cg(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does $o$-notation compare to $O$-notation? Back: The former denotes an upper bound that is not asymptotically tight. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $o(g(n))$ pronounced? Back: As "little-oh of $g$ of $n$". Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How can $f(n) = o(g(n))$ be expressed as a limit? Back: $$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which notation corresponds to asymptotic upper bounds that are not tight? Back: $o$-notation. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Every member of $o(g(n))$ is expected to be asymptotically what? Back: Nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $o(g(n))$ defined? Back: $\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \geq n_0, 0 \leq f(n) < cg(n) \}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze In $O(g(n))$, bound {1:$0 \leq f(n) \leq cg(n)$} holds for {1:some $c > 0$}. In $o(g(n))$, bound {2:$0 \leq f(n) < cg(n)$} holds for {2:all $c > 0$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Is $O$-notation considered stronger or weaker than $o$-notation? Back: Weaker. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $g(n)$ satisfy such that $o(g(n))$ is nonempty? Back: $g(n)$ must be asymptotically positive. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transitive property of $o$-notation? Back: $f(n) = o(g(n))$ and $g(n) = o(h(n))$ implies $f(n) = o(h(n))$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the reflexive property of $o$-notation? Back: N/A. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* is there no reflexive property of $o$-notation? Back: A function cannot be asymptotically smaller than itself. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the symmetric property of $o$-notation? Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transpose symmetric property of $o$-notation? Back: $f(n) = o(g(n))$ iff $g(n) = \omega(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic $o$-notation is likened to what comparison operator of real numbers? Back: $<$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {1:$\Omega$}-notation is to {2:$\geq$} whereas {2:$o$}-notation is to {1:$<$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How do we set theoretically say $f(n)$ is asymptotically smaller than $g(n)$? Back: $f(n) = o(g(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## Ω-notation ![[big-omega-notation.png]] $\Omega$-notation refers to a strict lower-bound. It is defined as set $$\Omega(g(n)) = \{ f(n) \mid \exists c, n_0 > 0, \forall n \geq n_0, 0 \leq cg(n) \leq f(n) \}$$ %%ANKI Basic What kind of mathematical object is $\Omega(g(n))$? Back: A set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers found in $\Omega(g(n))$, what values do $c$ and $n_0$ take on? Back: Positive constants. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What names are usually given to the existentially quantified identifers in $\Omega(g(n))$'s definition? Back: $c$ and $n_0$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What name is usually given to the universally quantified identifer in $\Omega(g(n))$'s definition? Back: $n$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Using typical identifiers, $f(n) = \Omega(g(n))$ satisfies {$0$} $\leq$ {$cg(n)$} $\leq$ {$f(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the lower bound of $cg(n)$ in $\Omega(g(n))$? Back: $0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the upper bound of $cg(n)$ in $\Omega(g(n))$? Back: $f(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the lower bound of $f(n)$ in $\Omega(g(n))$? Back: $cg(n)$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers, what is the upper bound of $f(n)$ in $\Omega(g(n))$? Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Given $f(n) = \Omega(g(n))$, we say {1:$g(n)$} is an asymptotic {2:lower} bound for {1:$f(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which notation corresponds to (potentially tight) asymptotic lower bounds? Back: $\Omega$-notation. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Every member of $\Omega(g(n))$ is expected to be asymptotically what? Back: Nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $g(n)$ satisfy such that $\Omega(g(n))$ is nonempty? Back: $g(n)$ must be asymptotically nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $\Omega(g(n))$ defined? Back: $\{ f(n) \mid \exists c, n_0 > 0, \forall n \geq n_0, 0 \leq cg(n) \leq f(n) \}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which asymptotic notation is this image demonstrating? ![[big-omega-notation.png]] Back: $\Omega$-notation Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In set-theoretic notation, what does it mean for $\Theta$-notation to be stronger than $\Omega$-notation? Back: $\Theta(g(n)) \subseteq \Omega(g(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What notation corresponds to best-case running times? Back: $\Omega$-notation Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {1:$O$}-notation is to asymptotic {2:upper}-bounds whereas {2:$\Omega$}-notation is to asymptotic {1:lower}-bounds. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What theorem relates $\Theta(g(n))$, $O(g(n))$, and $\Omega(g(n))$? Back: $f(n) = \Theta(g(n))$ iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transitive property of $\Omega$-notation? Back: $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ implies $f(n) = \Omega(h(n))$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the reflexive property of $\Omega$-notation? Back: $f(n) = \Omega(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $f(n)$ satisfy for equality $f(n) = \Omega(f(n))$ to hold? Back: $f(n)$ must be nonnegatively asymptotic. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* must $f(n)$ be nonnegatively asymptotic for $f(n) = \Omega(f(n))$ to hold? Back: Otherwise $\Omega(f(n))$ is the empty set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the symmetric property of $\Omega$-notation? Back: N/A. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transpose symmetric property of $\Omega$-notation? Back: $f(n) = \Omega(g(n))$ iff $g(n) = O(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic $\Omega$-notation is likened to what comparison operator of real numbers? Back: $\geq$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {1:$\Theta$}-notation is to {2:$=$} whereas {2:$\Omega$}-notation is to {1:$\geq$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {1:$O$}-notation is to {2:$\leq$} whereas {2:$\Omega$}-notation is to {1:$\geq$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## ω-notation $\omega$-notation refers to a lower bound that is not asymptotically tight. It is defined as set $$\omega(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \geq n_0, 0 \leq cg(n) < f(n) \}$$ %%ANKI Basic What kind of mathematical object is $\omega(g(n))$? Back: A set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Using typical identifiers found in $\omega(g(n))$, what values do $c$ and $n_0$ take on? Back: Positive constants. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What names are usually given to the existentially quantified identifers in $\omega(g(n))$'s definition? Back: $n_0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What names are usually given to the universally quantified identifers in $\omega(g(n))$'s definition? Back: $c$ and $n$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Using typical identifiers, $f(n) = \omega(g(n))$ satisfies {$0$} $\leq$ {$cg(n)$} $<$ {$f(n)$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does $\omega$-notation compare to $\Omega$-notation? Back: The former denotes a lower bound that is not asymptotically tight. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $\omega(g(n))$ pronounced? Back: As "little-omega of $g$ of $n$". Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How can $f(n) = \omega(g(n))$ be expressed as a limit? Back: $$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which notation corresponds to asymptotic lower bounds that are not tight? Back: $\omega$-notation. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Every member of $\omega(g(n))$ is expected to be asymptotically what? Back: Nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is $\omega(g(n))$ defined? Back: $\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \geq n_0, 0 \leq cg(n) < f(n) \}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze In $\Omega(g(n))$, bound {1:$0 \leq cg(n) \leq f(n)$} holds for {1:some $c > 0$}. In $\omega(g(n))$, bound {2:$0 \leq cg(n) < f(n)$} holds for {2:all $c > 0$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Is $\omega$-notation considered stronger or weaker than $\Omega$-notation? Back: Stronger. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What condition must $g(n)$ satisfy such that $\omega(g(n))$ is nonempty? Back: $g(n)$ must be asymptotically nonnegative. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transitive property of $\omega$-notation? Back: $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ implies $f(n) = \omega(h(n))$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the reflexive property of $\omega$-notation? Back: N/A. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* is there no reflexive property of $\omega$-notation? Back: A function cannot be asymptotically larger than itself. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the symmetric property of $\omega$-notation? Back: N/A. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the transpose symmetric property of $\omega$-notation? Back: $f(n) = \omega(g(n))$ iff $g(n) = o(f(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic $\omega$-notation is likened to what comparison operator of real numbers? Back: $>$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {1:$O$}-notation is to {2:$\leq$} whereas {2:$\omega$}-notation is to {1:$>$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How do we set theoretically say $f(n)$ is asymptotically larger than $g(n)$? Back: $f(n) = \omega(g(n))$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## Bibliography * Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).