--- title: Propositional Logic TARGET DECK: Obsidian::STEM FILE TAGS: logic::propositional tags: - logic - propositional --- ## Overview A branch of logic derived from negation ($\neg$), conjunction ($\land$), disjunction ($\lor$), implication ($\Rightarrow$), and biconditionals ($\Leftrightarrow$). There exists a hierarchy of terms used to describe a string of English: * A **sentence** is any grammatical string of words. * A **predicate** is a sentence with free variables. * A **statement** is a sentence that can be assigned a truth or false value. * A predicate with free variables "plugged in" is a statement. %%ANKI Basic What are the basic propositional logical operators? Back: $\neg$, $\land$, $\lor$, $\Rightarrow$, and $\Leftrightarrow$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic What is a propositional statement? Back: A declarative sentence which is either true or false. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What two categories do propositional statements fall within? Back: Atomic and molecular statements. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What is an atomic statement? Back: One that cannot be broken up into smaller statements. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What is a molecular statement? Back: One that can be broken up into smaller statements. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Cloze A {molecular} statement can be broken up into {atomic} statements. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What distinguishes a sentence from a statement? Back: The latter is a sentence that can be derived a truth value. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What distinguishes a predicate from a statement? Back: A statement does not contain free variables. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic How are statements defined in terms of predicates? Back: A statement is a predicate with $0$ free variables. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Why is "$3 + x = 12$" *not* a statement? Back: Because $x$ is a variable. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% ## Implication Implication is denoted as $\Rightarrow$. It has truth table $p$ | $q$ | $p \Rightarrow q$ --- | --- | ----------------- $T$ | $T$ | $T$ $T$ | $F$ | $F$ $F$ | $T$ | $T$ $F$ | $F$ | $T$ Implication has a few "equivalent" English expressions that are commonly used. Given propositions $P$ and $Q$, we have the following equivalences: * $P$ if $Q$ * $P$ only if $Q$ * $P$ is necessary for $Q$ * $P$ is sufficient for $Q$ %%ANKI Basic What name is given to operand $a$ in $a \Rightarrow b$? Back: The antecedent Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic What name is given to operand $b$ in $a \Rightarrow b$? Back: The consequent Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How does "$P$ if $Q$" translate with $\Rightarrow$? Back: $Q \Rightarrow P$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic How does "$P$ only if $Q$" translate with $\Rightarrow$? Back: $P \Rightarrow Q$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic How does "$P$ is necessary for $Q$" translate with $\Rightarrow$? Back: $Q \Rightarrow P$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic How does "$P$ is sufficient for $Q$" translate with $\Rightarrow$? Back: $P \Rightarrow Q$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Which of *if* or *only if* map to *necessary*? Back: *if* Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Which of *if* or *only if* map to *sufficient*? Back: *only if* Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Which logical operator maps to "if and only if"? Back: $\Leftrightarrow$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Which logical operator maps to "necessary and sufficient"? Back: $\Leftrightarrow$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What is the converse of $P \Rightarrow Q$? Back: $Q \Rightarrow P$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic When is implication equivalent to its converse? Back: It's indeterminate. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What is the contrapositive of $P \Rightarrow Q$? Back: $\neg Q \Rightarrow \neg P$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic When is implication equivalent to its contrapositive? Back: They are always equivalent. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% ## References * Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. * Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).