--- title: Natural Deduction TARGET DECK: Obsidian::STEM FILE TAGS: formal-system::natural-deduction tags: - logic - natural-deduction - programming --- ## Overview Natural deduction is a proof system typically used alongside classical truth-functional [[prop-logic|propositional]] and [[pred-logic|predicate]] logic. It is meant to mimic the patterns of reasoning that one might "naturally" make when forming arguments in plain English. %%ANKI Basic Why is natural deduction named the way it is? Back: It is mean to mimic the patterns of reasoning one might "naturally" make when forming arguments in plain English. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ## Axioms Natural deduction is interesting in that it has no axioms. %%ANKI Basic How many axioms does natural deduction include? Back: $0$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ## Inference Rules Scoped to propositional logic, there are 10 inference rules corresponding to an "introduction" and "elimination" of each propositional logic operator. %%ANKI Basic With respect to propositional logic, how many inference rules does natural deduction include? Back: $10$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How are natural deduction's inference rules categorized into two? Back: As introduction and elimination rules. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic With respect to propositional logic, how are natural deduction's inference rules categorized into five? Back: As an introduction and elimination rule per propositional logic operator. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ### Negation For propositions $E_1$ and $E_2$, $$\neg{\text{-}}I{:} \quad \begin{array}{c} \text{from } E_1 \text{ infer } E_2 \land \neg E_2 \\ \hline \neg E_1 \end{array}$$ and $$\neg{\text{-}}E{:} \quad \begin{array}{c} \text{from } \neg E_1 \text{ infer } E_2 \land \neg E_2 \\ \hline E_1 \end{array}$$ %%ANKI Basic In natural deduction, how is negation introduction denoted? Back: As $\neg{\text{-}}I$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic In natural deduction, how is negation elimination denoted? Back: As $\neg{\text{-}}E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is $\neg{\text{-}}I$ expressed in schematic notation? Back: $$\neg{\text{-}}I{:} \quad \begin{array}{c} \text{from } E_1 \text{ infer } E_2 \land \neg E_2 \\ \hline \neg E_1 \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is $\neg{\text{-}}E$ expressed in schematic notation? Back: $$\neg{\text{-}}E{:} \quad \begin{array}{c} \text{from } \neg E_1 \text{ infer } E_2 \land \neg E_2 \\ \hline E_1 \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ### Conjunction For propositions $E_1, \ldots, E_n$, $$\land{\text{-}}I{:} \quad \begin{array}{c} E_1, \ldots, E_n \\ \hline E_1 \land \cdots \land E_n \end{array}$$ and $$\land{\text{-}}E{:} \quad \begin{array}{c} E_1 \land \cdots \land E_n \\ \hline E_i \end{array}$$ %%ANKI Basic In natural deduction, how is conjunction introduction denoted? Back: As $\land{\text{-}}I$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic In natural deduction, how is conjunction elimination denoted? Back: As $\land{\text{-}}E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is $\land{\text{-}}I$ expressed in schematic notation? Back: $$\begin{array}{c} E_1, \ldots, E_n \\ \hline E_1 \land \cdots \land E_n \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is $\land{\text{-}}E$ expressed in schematic notation? Back: $$\begin{array}{c} E_1 \land \cdots \land E_n \\ \hline E_i \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \\ 2. & Q \\ 3. & R \\ \hline & P \land R \end{array}$$ Back: $\land{\text{-}}I$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \land Q \\ \hline & P \end{array}$$ Back: $\land{\text{-}}E$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ### Disjunction For propositions $E_1, \ldots, E_n$, $$\lor{\text{-}}I{:} \quad \begin{array}{c} E_i \\ \hline E_1 \lor \cdots \lor E_n \end{array}$$ and $$\lor{\text{-}}E{:} \quad \begin{array}{c} E_1 \lor \cdots \lor E_n, E_1 \Rightarrow E, \ldots, E_n \Rightarrow E \\ \hline E \end{array}$$ %%ANKI Basic In natural deduction, how is disjunction introduction denoted? Back: As $\lor{\text{-}}I$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic In natural deduction, how is disjunction elimination denoted? Back: As $\lor{\text{-}}E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is $\lor{\text{-}}I$ expressed in schematic notation? Back: $$\begin{array}{c} E_i \\ \hline E_1 \lor \cdots \lor E_n \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is $\lor{\text{-}}E$ expressed in schematic notation? Back: $$\begin{array}{c} E_1 \lor \cdots \lor E_n, E_1 \Rightarrow E, \ldots, E_n \Rightarrow E \\ \hline E \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \\ 2. & Q \\ \hline & R \lor P \end{array}$$ Back: $\lor{\text{-}}I$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \lor Q \\ 2. & P \Rightarrow R \\ 3. & Q \Rightarrow R \\ \hline & P \end{array}$$ Back: $\lor{\text{-}}E$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ### Implication For propositions $E_1, \ldots, E_n$, $${\Rightarrow}{\text{-}}I: \quad \begin{array}{c} \text{from } E_1, \cdots, E_n \text{ infer } E \\ \hline (E_1 \land \cdots \land E_n) \Rightarrow E \end{array}$$ and $${\Rightarrow}{\text{-}}E: \quad \begin{array}{c} E_1 \Rightarrow E_2, E_1 \\ \hline E_2 \end{array}$$ %%ANKI Basic In natural deduction, how is implication introduction denoted? Back: As ${\Rightarrow}{\text{-}}I$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is ${\Rightarrow}{\text{-}}I$ expressed in schematic notation? Back: $${\Rightarrow}{\text{-}}I: \quad \begin{array}{c} \text{from } E_1, \cdots, E_n \text{ infer } E \\ \hline (E_1 \land \cdots \land E_n) \Rightarrow E \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic In natural deduction, how is implication elimination denoted? Back: As ${\Rightarrow}{\text{-}}E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic *Modus ponens* is associated with which propositional logic operator? Back: $\Rightarrow$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Does *modus ponens* correspond to an introduction or elimination rule? Back: Elimination. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is ${\Rightarrow}{\text{-}}E$ expressed in schematic notation? Back: $$\begin{array}{c} E_1 \Rightarrow E_2, E_1 \\ \hline E_2 \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is *modus ponens* expressed in schematic notation? Back: $$\begin{array}{c} E_1 \Rightarrow E_2, E_1 \\ \hline E_2 \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \Rightarrow Q \\ 2. & P \\ \hline & R \end{array}$$ Back: N/A. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \Rightarrow Q \\ 2. & P \\ \hline & Q \end{array}$$ Back: ${\Rightarrow}{\text{-}}E$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ### Biconditional For propositions $E_1$ and $E_2$, $${\Leftrightarrow}{\text{-}}I: \quad \begin{array}{c} E_1 \Rightarrow E_2, E_2 \Rightarrow E_1 \\ \hline E_1 \Leftrightarrow E_2 \end{array}$$ and $${\Leftrightarrow}{\text{-}}E: \quad \begin{array}{c} E_1 \Leftrightarrow E_2 \\ \hline E_1 \Rightarrow E_2, E_2 \Rightarrow E_1 \end{array}$$ %%ANKI Basic In natural deduction, how is biconditional introduction denoted? Back: As ${\Leftrightarrow}{\text{-}}I$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic In natural deduction, how is biconditional elimination denoted? Back: As ${\Leftrightarrow}{\text{-}}E$. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is ${\Leftrightarrow}{\text{-}}I$ expressed in schematic notation? Back: $$\begin{array}{c} E_1 \Rightarrow E_2, E_2 \Rightarrow E_1 \\ \hline E_1 \Leftrightarrow E_2 \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \Rightarrow Q \\ 2. & Q \Rightarrow P \\ \hline & Q \Leftrightarrow P \end{array}$$ Back: ${\Leftrightarrow}{\text{-}}I$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic How is ${\Leftrightarrow}{\text{-}}E$ expressed in schematic notation? Back: $$\begin{array}{c} E_1 \Leftrightarrow E_2 \\ \hline E_1 \Rightarrow E_2, E_2 \Rightarrow E_1 \end{array}$$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% %%ANKI Basic Which natural deduction inference rule is used in the following? $$\begin{array}{rc} 1. & P \Leftrightarrow Q \\ \hline & Q \Rightarrow P \end{array}$$ Back: ${\Leftrightarrow}{\text{-}}E$ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% ## Bibliography * Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.