--- title: λ-Calculus TARGET DECK: Obsidian::STEM FILE TAGS: λ-calculus tags: - λ-calculus --- ## Overview Assume that there is given an infinite sequence of expressions called **variables** and a finite or infinite sequence of expressions called **atomic constants**, different from the variables. The set of expressions called $\lambda$-terms is defined inductively as follows: * all variables and atomic constants are $\lambda$-terms (called **atoms**); * if $M$ and $N$ are $\lambda$-terms, then $(MN)$ is a $\lambda$-term (called **application**); * if $M$ is a $\lambda$-term and $x$ is a variable, then $(\lambda x. M)$ is a $\lambda$-term (called **abstraction**). If the sequence of atomic constants is empty, the system is called **pure**. Otherwise it is called **applied**. %%ANKI Basic Who is usually attributed the creation of $\lambda$-calculus? Back: Alonzo Church. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does a "higher-order function" refer to? Back: A function that acts on other functions. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is $f(x) = x - y$ written using $\lambda$-calculus? Back: $\lambda x. x - y$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is $f(x, y) = x - y$ written using (uncurried) $\lambda$-calculus? Back: $\lambda x y. x - y$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How do you curry expression $\lambda x y. x - y$? Back: $\lambda x. \lambda y. x - y$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How do you uncurry expression $\lambda x. \lambda y. x - y$? Back: $\lambda x y. x - y$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does $(\lambda x. x - y)(0)$ evaluate to? Back: $0 - y$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How many variables exist in a $\lambda$-calculus system? Back: An infinite number. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How many atomic constants exist in a $\lambda$-calculus system? Back: Zero or more. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What distinguishes variables and atomic constants in the $\lambda$-calculus? Back: The latter is meant to refer to constants outside the system. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What two classes of expressions does an "atom" potentially refer to in the $\lambda$-calculus? Back: Variables and atomic constants. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What general term refers to both variables and atomic constants in the $\lambda$-calculus? Back: Atoms. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Why are variables and atomic constants called "atoms" in the $\lambda$-calculus? Back: They are not composed of smaller $\lambda$-terms. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is a $\lambda$-calculus considered pure? Back: When there exist no atomic constants in the system. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is a $\lambda$-calculus considered applied? Back: When there exists at least one atomic constant in the system. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze A $\lambda$-calculus is either {pure} or {applied}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What term refers to the base case of the $\lambda$-term definition? Back: The atoms. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What terms refer to the inductive cases of the $\lambda$-term definition? Back: Application and abstraction. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze Given $\lambda$-terms $M$ and $N$, {$(MN)$} is referred to as {application}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze Given $\lambda$-term $M$ and variable $x$, {$(\lambda x. M)$} is referred to as {abstraction}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Consider term $(\lambda x. x)(0)$. Is our $\lambda$-calculus pure or applied? Back: Applied. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Consider term $(\lambda x. x)(y)$. Is our $\lambda$-calculus pure or applied? Back: Indeterminate. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What three terms categorize all $\lambda$-terms? Back: Atoms, applications, and abstractions. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is a constant function returning $y$ denoted in $\lambda$-calculus? Back: $\lambda x. y$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze By convention, parentheses in $\lambda$-calculus are {left}-associative. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is $\lambda$-term $\lambda x. \lambda y. MN$ written with parentheses reintroduced? Back: $(\lambda x. (\lambda y. (MN)))$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How are parentheses conventionally reintroduced to $\lambda$-term $MN$? Back: $(MN)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How are parentheses conventionally reintroduced to $\lambda$-term $MNPQ$? Back: $(((MN)P)Q)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How are parentheses conventionally reintroduced to $\lambda$-term $\lambda x. PQ$? Back: $(\lambda x. (PQ))$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze $(MN)$ is interpreted as applying {1:$M$} to {1:$N$}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Syntactic Identity **Syntactic identity** of terms is denoted by "$\equiv$". %%ANKI Basic What does it mean for two terms to be syntactically identical? Back: The terms are written out using the exact same sequence of characters. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What form of Lean equality corresponds to $\lambda$-calculus's $\equiv$ operator? Back: Syntactic equality. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). Tags: lean END%% %%ANKI Basic How does Hindley et al. denote syntactic identity of $\lambda$-terms $M$ and $N$? Back: $M \equiv N$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What syntactic identities are assumed when $MN \equiv PQ$? Back: $M \equiv P$ and $N \equiv Q$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What syntactic identities are assumed when $\lambda x. M \equiv \lambda y. P$? Back: $x \equiv y$ and $M \equiv P$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Length The length of a $\lambda$-term (denoted $lgh$) is equal to the number of atoms in the term: * $lgh(a) = 1$ for all atoms $a$; * $lgh(MN) = lgh(M) + lgh(N)$; * $lgh(\lambda x. M) = 1 + lgh(M)$. %%ANKI Basic What is the base case of the recursive definition of the "length of a $\lambda$-term"? Back: $lgh(a) = 1$ for all atoms $a$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does the length of a $\lambda$-term measure? Back: The number of atoms in the term. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic For atom $a$, what does $lgh(a)$ equal? Back: $1$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the recursive definition of the "length of application"? Back: For $\lambda$-terms $M$ and $N$, $lgh(MN) = lgh(M) + lgh(N)$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic For $\lambda$-terms $M$ and $N$, what does $lgh(MN)$ equal? Back: $lgh(M) + lgh(N)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the recursive definition of the "length of abstraction"? Back: For $\lambda$-term $M$, $lgh(\lambda x. M) = 1 + lgh(M)$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic For $\lambda$-term $M$, what does $lgh(\lambda x. M)$ equal? Back: $1 + lgh(M)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does $lgh(x(\lambda y. yux))$ equal? Back: $5$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze The phrase "{induction on $M$}" is an abbrevation of phrase "{induction on $lgh(M)$}". Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Occurrence For $\lambda$-terms $P$ and $Q$, the relation **$P$ occurs in $Q$** is defined by induction on $Q$ as: * $P$ occurs in $P$; * if $P$ occurs in $M$ or in $N$, then $P$ occurs in $(MN)$; * if $P$ occurs in $M$ or $P$ is $x$, then $P$ occurs in $(\lambda x. M)$. %%ANKI Basic What is the base case of recursive definition "$P$ occurs in $Q$"? Back: $P$ occurs in $P$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What intuition does the "occurs in" relation aim to capture? Back: Whether a $\lambda$-term appears somewhere in another $\lambda$-term. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze If $P$ occurs in {1:$M$} or {1:$N$}, then $P$ occurs in $(MN)$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze If $P$ occurs in {1:$M$} or $P$ {1:is $x$}, then $P$ occurs in $(\lambda x. M)$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is "occurs in" recursively defined for application? Back: $P$ occurs in $(MN)$ if $P$ occurs in $M$ or $P$ occurs in $N$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is "occurs in" recursively defined for abstraction? Back: $P$ occurs in $(\lambda x. M)$ if $P$ occurs in $M$ or $P$ is $x$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How many occurences of $x$ are in $((xy)(\lambda x. (xy)))$? Back: $3$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What preprocessing step does Hindley et al. recommend when counting occurrences of $\lambda$-terms? Back: Reintroduce parentheses. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% For a particular occurrence of $\lambda x. M$ in a term $P$, the occurrence of $M$ is called the **scope** of the occurrence of $\lambda x$. %%ANKI Cloze Given term $\lambda x. M$, the occurrence of {1:$M$} is called the {2:scope} of the occurrence of {1:$\lambda x$}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic The concept of scope is relevant to what kind of $\lambda$-term? Back: Abstractions. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the scope of the leftmost $\lambda y$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$ Back: $yx(\lambda x. y(\lambda y. z)x)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the scope of $\lambda x$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$ Back: $y(\lambda y. z)x$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the scope of the rightmost $\lambda y$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$ Back: $z$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is wrong with asking "what is the scope of $x$ in $\lambda x. P$"? Back: We should be asking what the scope of $\lambda x$ is. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Free and Bound Variables An occurrence of a variable $x$ in a term $P$ is called * **bound** if it is in the scope of a $\lambda x$ in $P$; * **bound and binding** iff it is the $x$ in $\lambda x$; * **free** otherwise. $FV(P)$ denotes the set of all free variables of $P$. A **closed term** is a term without any free variables. %%ANKI Basic What kind of $\lambda$-terms can be classified as bound and/or free? Back: Variables. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is variable $x$ in term $P$ said to be "bound"? Back: When it is in the scope of a $\lambda x$ in $P$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is variable $x$ in term $P$ said to be "bound and binding"? Back: If and only if it is the $x$ in some occurrence of $\lambda x$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is variable $x$ in term $P$ said to be "free"? Back: When it is not bound. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is variable $x$ in term $P$ said to be "bound" and "free"? Back: When one occurrence is bound and another occurrence is free. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is variable $x$ called a "bound variable of $P$"? Back: When $x$ has at least one binding occurrence in $P$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is variable $x$ called a "free variable of $P$"? Back: When $x$ has at least one free occurrence in $P$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze {$FV(P)$} denotes the {set of all free variables} of $P$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When is a $\lambda$-term considered "closed"? Back: When the term has no free variables. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What term describes $\lambda$-term $P$ satisfying $FV(P) = \varnothing$? Back: Closed. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Using $FV$, when is $\lambda$-term $P$ closed? Back: When $FV(P) = \varnothing$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $\lambda x. y$ a closed term? Why or why not? Back: No. $y$ is a free variable. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $\lambda x. x$ a closed term? Why or why not? Back: Yes. The term has no free variables. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Which specific occurrences are bound in $\lambda x. x(\lambda y. yz)$? Back: Both $x$s and both $y$s. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Which specific occurrences are free in $\lambda x. x(\lambda y. yz)$? Back: The only $z$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Which specific occurrences are bound and binding in $\lambda x. x(\lambda y. yz)$? Back: The first $x$ and the first $y$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does expression $FV(\lambda x. xyz)$ evaluate to? Back: $\{y, z\}$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given $\lambda$-term $P$, what kind of mathematic object is $FV(P)$? Back: A set. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Substitution For any $M$, $N$, and $x$, define $[N/x]M$ to be the result of substituting $N$ for every free occurrence of $x$ in $M$, and changing bound variables to avoid clashes. %%ANKI Basic How is $E_e^x$ equivalently written in $\lambda$-calculus? Back: $[e/x]E$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is $[N/x]M$ equivalently written in equivalence transformation? Back: $M_N^x$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How does substitution, say $[N/x]M$, affect free variables? Back: Every free occurrence of $x$ is substituted with $N$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How does substitution, say $[N/x]M$, affect bound variables? Back: Bound variables are renamed to avoid name clashes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze $[N/x]M$ is the result of substituting {1:$N$} for every free occurrence of {1:$x$} in {1:$M$}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze {$M^x_e$} is to equivalence transformation whereas {$[e/x]M$} is to $\lambda$-calculus. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the result of $[N/x]x$? Back: $N$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the result of $[N/x]a$, for some atom $a \not\equiv x$? Back: $a$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the result of $[N/x]a$, for some atom $a \equiv x$? Back: $N$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the result of $[N/x](PQ)$? Back: $([N/x]P)([N/x]Q)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the result of $[N/x](\lambda x. P)$? Back: $\lambda x. P$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic If $x \in FV(P)$ and $y \in FV(N)$, what is the result of $[N/x](\lambda y. P)$? Back: $\lambda z. [N/x][z/y]P$ where $z \not\in FV(NP)$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic If $x \not\in FV(P)$ and $y \in FV(N)$, what is the result of $[N/x](\lambda y. P)$? Back: $\lambda y. P$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic If $x \in FV(P)$ and $y \not\in FV(N)$, what is the result of $[N/x](\lambda y. P)$? Back: $\lambda y. [N/x]P$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic If $x \not\in FV(P)$ and $y \not\in FV(N)$, what is the result of $[N/x](\lambda y. P)$? Back: $\lambda y. P$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $(\lambda x. xy)N \equiv Ny$? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $[N/x]xy \equiv Ny$? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% For all $\lambda$-terms $M$, $N$, and variables $x$: * $[x/x]M \equiv M$ * $x \not\in FV(M) \Rightarrow [N/x]M \equiv M$ * $x \in FV(M) \Rightarrow FV([N/x]M) = FV(N) \cup (FV(M) - \{x\})$ * $lgh([y/x]M) = lgh(M)$ %%ANKI Basic What is the result of $[x/x]M$? Back: $M$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic If $x \not\in FV(M)$, what is the result of $[N/x]M$? Back: $M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Suppose $x \in FV(M)$. How is $FV([N/x]M)$ equivalently written without substitution? Back: $FV(N) \cup (FV(M) - \{x\})$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Suppose $x \in FV(M)$. How is $FV(N) \cup (FV(M) - \{x\})$ more simply written using substitution? Back: $FV([N/x]M)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the result of $lgh([y/x]M)$? Back: $lgh(M)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Bibliography * Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).