--- title: β-reduction TARGET DECK: Obsidian::STEM FILE TAGS: λ-calculus tags: - λ-calculus --- ## Overview Any term of form $(\lambda x. M)N$ is called a **$\beta$-redex**. The corresponding term $[N/x]M$ is its **contractum**. If and only if a term $P$ contains an occurrence of $(\lambda x. M)N$ and we replace that occurrence by $[N/x]M$, and the result is $P'$, we say we have **contracted** the redex-occurrence in $P$, and $P$ $\beta$-contracts to $P'$ or $P \,\triangleright_{1\beta}\, P'$. If and only if $P$ can be changed to a term $Q$ by a finite series of $\beta$-contractions and changes of bound variables, we say $P$ $\beta$-reduces to $Q$, or $P \,\triangleright_{\beta}\, Q$. %%ANKI Cloze $\alpha$-{converts} is to $\beta$-{reduces}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze $\alpha$-{conversion} is to $\beta$-{contraction}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze "$\beta$-{contracts}" refers to exactly one contraction of a redex-occurrence. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze "$\beta$-{reduces}" refers to zero or more contractions of redex-occurrences. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze {1:$(\lambda x.M)N$} is to a {2:$\beta$-redex} whereas {2:$[N/x]M$} is to a {1:contractum}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic A $\lambda$-term of form $(\lambda x.M)N$ is called what? Back: A $\beta$-redex. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What contractum corresponds to $\beta$-redex $(\lambda x. M)N$? Back: $[N/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What $\beta$-redex corresponds to contractum $[N/x]M$? Back: $(\lambda x. M)N$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does it mean to contract a redex-occurrence of $P$? Back: A $\beta$-redex in $P$ was replaced by its contractum. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How do we denote "$P$ $\beta$-contracts to $Q$"? Back: $P \,\triangleright_{1\beta}\, Q$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How do we denote "$P$ $\beta$-reduces to $Q$"? Back: $P \,\triangleright_{\beta}\, Q$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic *Why* isn't $(\lambda x. x) \,\triangleright_{1\beta}\, (\lambda x. x)$ true? Back: No $\beta$-redex was replaced with its contractum. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given $\lambda$-term $P$, is $P \,\triangleright_{1\beta}\, P$ true? Back: Not necessarily. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given $\lambda$-term $P$, when is $P \,\triangleright_{1\beta}\, P$ true? Back: When substituting a $\beta$-redex in $P$ with its contractum yields $P$ again. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given $\lambda$-term $P$, is $P \,\triangleright_{\beta}\, P$ true? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $(\lambda x. x) \,\triangleright_{1\beta}\, (\lambda y. y)$ true? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $(\lambda x. x) \,\triangleright_{\beta}\, (\lambda y. y)$ true? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic In what way is $\beta$-contraction a stricter operation than $\beta$-reduction? Back: The former *requires* replacing a $\beta$-redex occurrence with its contractum. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic In what way is $\beta$-reduction more general than $\alpha$-conversion? Back: $\beta$-reduction involves a finite sequence of $\beta$-contractions *and* $\alpha$-conversions. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How do we pronounce $P \,\triangleright_{1\beta}\, Q$? Back: $P$ $\beta$-contracts to $Q$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How do we pronounce $P \,\triangleright_{\beta}\, Q$? Back: $P$ $\beta$-reduces to $Q$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% Substitution is well-defined with respect to $\beta$-reduction. That is, if $M \,\triangleright_\beta\, M'$ and $N \,\triangleright_\beta\, N'$, then $$[N/x]M \,\triangleright_\beta\, [N'/x]M'$$ %%ANKI Basic The proof of which implication shows "substitution is well-behaved w.r.t. $\beta$-reduction"? Back: $M \,\triangleright_\beta\, M' \land N \,\triangleright_\beta\, N' \Rightarrow [N/x]M \,\triangleright_\beta\, [N'/x]M'$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does Hindley et al. mean by "substitution is well-behaved w.r.t. $\beta$-conversion"? Back: Substitution then $\beta$-reduction is congruent to $\beta$-reduction then substitution. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze {$M \,\triangleright_\beta\, M' \land N \,\triangleright_\beta\, N'$} $\Rightarrow [N/x]M \,\triangleright_\beta\, [N'/x]M'$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How does Hindley et al. describe the following implication? $$M \,\triangleright_\beta\, M' \land N \,\triangleright_\beta\, N' \Rightarrow [N/x]M \,\triangleright_\beta\, [N'/x]M'$$ Back: As "substitution is well-defined with respect to $\beta$-reduction." Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Normal Form A term $Q$ which contains no $\beta$-redexes is called a **$\beta$-normal form** (or a **term in $\beta$-normal form** or just a **$\beta\text{-nf}$**). The class of all $\beta$-normal forms is called $\beta\text{-nf}$ or $\lambda\beta\text{-nf}$. If a term $P$ $\beta$-reduces to a term $Q$ in $\beta\text{-nf}$, then $Q$ is called a **$\beta$-normal form of $P$**. %%ANKI Basic $\beta$-reduction terminates if and only if what? Back: We reduce to a term in $\beta$-normal form. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $\beta$-reduction guaranteed to terminate? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $\beta$-reduction guaranteed to simplify? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is a $\beta$-normal form defined? Back: As a $\lambda$-term that contains no $\beta$-redexes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Cloze The class of {all $\beta$-normal forms} is called {$\beta\text{-nf}$/$\lambda\beta\text{-nf}$}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What ambiguity does term "$\beta\text{-nf}$" introduce? Back: It refers to a specific $\beta$-normal form or the class of $\beta$-normal forms. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does it mean for term $Q$ to be a $\beta$-normal form of term $P$? Back: $P$ $\beta$-reduces to a term $Q$ in $\beta\text{-nf}$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is the class $\beta\text{-nf}$ alternatively denoted? Back: As $\lambda\beta\text{-nf}$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How is the class $\lambda\beta\text{-nf}$ alternatively denoted? Back: As $\beta\text{-nf}$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the $\beta$-normal form of $(\lambda x. x(xy))N$? Back: $N(Ny)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What is the $\beta$-normal form of $(\lambda x. xx)(\lambda x. xx)$? Back: N/A. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic How many contractions make up a $\beta$-reduction? Back: Zero or more. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $x(\lambda u. uv)$ in $\beta$-normal form? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $(\lambda u. uv)x$ in $\beta$-normal form? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Is $a(\lambda u. uv)x$ in $\beta$-normal form? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic *Why* is $x(\lambda u. uv)$ in $\beta$-normal form? Back: It contains no $\beta$-redex. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic *Why* isn't $(\lambda u. uv)x$ in $\beta$-normal form? Back: Because $(\lambda u. uv)x$ is a $\beta$-redex. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic *Why* is $a(\lambda u. uv)x$ in $\beta$-normal form? Back: With parentheses, $(a(\lambda u. uv))x$ clearly contains no $\beta$-redex. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Let $P \,\triangleright_\beta\, Q$. How do $FV(P)$ and $FV(Q)$ relate to one another? Back: $FV(Q) \subseteq FV(P)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Suppose $P \,\triangleright_\beta\, Q$. When is $FV(Q) \subset FV(P)$ true? Back: When replacing a $\beta$-redex with its contractum removes a free variable. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic $\beta$-reduction "loses" free variable $N$ when it contains what $\beta$-redex? Back: If $x \not\in FV(M)$, then $(\lambda x. M)N$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% As an alternative characterization, the class $\beta\text{-nf}$ is the smallest class such that * all atoms are in $\beta\text{-nf}$; * $M, N \in \beta\text{-nf} \Rightarrow aMN \in \beta\text{-nf}$ for all atoms $a$; * $M \in \beta\text{-nf} \Rightarrow \lambda x. M \in \beta\text{-nf}$ %%ANKI Basic What proposition explains how atoms relate to the definition of $\beta\text{-nf}$? Back: All atoms are in $\beta\text{-nf}$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What proposition explains how applications relate to the definition of $\beta\text{-nf}$? Back: For all atoms $a$, if $M, N \in \beta\text{-nf}$, then $aMN \in \beta\text{-nf}$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given atom $a$ and $M \in \beta\text{-nf}$, what application is in $\beta\text{-nf}$? Back: $aM$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic $M, N \in \beta\text{-nf}$ implies what application is in $\beta\text{-nf}$? Back: $aMN$ for any atom $a$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given $M, N \in \beta\text{-nf}$, when is $MN \in \beta\text{-nf}$? Back: When $M$ is not an abstraction. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given $M, N \in \beta\text{-nf}$, when is $MN \not\in \beta\text{-nf}$? Back: When $M$ is an abstraction. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What proposition explains how abstractions relate to the definition of $\beta\text{-nf}$? Back: If $M \in \beta\text{-nf}$, then $\lambda x. M \in \beta\text{-nf}$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic $M \in \beta\text{-nf}$ implies what abstraction is in $\beta\text{-nf}$? Back: $\lambda x. M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given atom $a$, if $M \equiv aM_1\ldots M_n$ and $M \,\triangleright_\beta\, N$, what form does $N$ have? Back: $aN_1\ldots N_n$ where $M_i \,\triangleright_\beta\, N_i$ for $i = 1, \ldots, n$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Given atom $a$, if $M \equiv aM_1\ldots M_n$ and $M \,\triangleright_\beta\, N$, *why* does $N$ have form $aN_1\ldots N_n$? Back: Since $M \equiv ((\cdots((aM_1)M_2)\cdots)M_n)$, every $\beta$-redex must be in an $M_i$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does it mean for a $\lambda$-term to *be* a $\beta\text{-nf}$? Back: The $\lambda$-term contains no $\beta$-redex. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does it mean for a $\lambda$-term to *have* a $\beta\text{-nf}$? Back: The $\lambda$-term can be $\beta$-reduced into a term in $\beta\text{-nf}$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Suppose $[N/x]M$ is a $\beta\text{-nf}$. Is $M$ a $\beta\text{-nf}$? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic Suppose $[N/x]M$ has a $\beta\text{-nf}$. Does $M$ have a $\beta\text{-nf}$? Back: Not necessarily. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Church-Rosser Theorem If $P \,\triangleright_\beta\, M$ and $P \,\triangleright_\beta\, N$, then there exists a term $T$ such that $M \,\triangleright_\beta\, T$ and $N \,\triangleright_\beta\, T$. As an immediate corollary, if $P$ has a $\beta$-normal form then it it is unique modulo $\equiv_\alpha$. %%ANKI Basic According to Hindley et al., what is the most quoted theorem in $\lambda$-calculus? Back: The Church-Rosser theorem. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic The Church-Rosser theorem is related to which greek-prefixed concept? Back: $\beta$-reductions. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does the Church-Rosser theorem state in terms of $\triangleright_\beta$? Back: If $P \,\triangleright_\beta\, M$ and $P \,\triangleright_\beta\, N$, then there exists a term $T$ such that $M \,\triangleright_\beta\, T$ and $N \,\triangleright_\beta\, T$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When does a $\lambda$-term have zero $\beta$-normal forms (modulo $\equiv_\alpha$)? Back: When its $\beta$-reductions fail to simplify. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When does a $\lambda$-term have one $\beta$-normal form (modulo $\equiv_\alpha$)? Back: When its $\beta$-reductions simplify to a point of containing no $\beta$-redexes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic When does a $\lambda$-term have two $\beta$-normal form (modulo $\equiv_\alpha$)? Back: N/A. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What theorem is used to prove uniqueness of $\beta$-normal forms? Back: The Church-Rosser theorem. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic If a $\lambda$-term has $\beta$-normal forms $P$ and $Q$, how do $P$ and $Q$ relate to one another? Back: $P \equiv_\alpha Q$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic What does the Church-Rosser theorem for $\triangleright_\beta$ state in terms of confluence? Back: $\beta$-reduction is confluent. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic The following diagram is a representation of what theorem? ![[church-rosser.png]] Back: The Church-Rosser theorem for $\triangleright_\beta$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic According to Hindley et al., what is the most important application of the Church-Rosser theorem? Back: Showing computations in $\lambda$-calculus produce congruent results. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic For a given $\lambda$-term $P$, how many $\beta$-normal forms does $P$ have? Back: Zero or one. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% %%ANKI Basic In the following Church-Rosser diagram, what do the arrows represent? ![[church-rosser.png]] Back: $\beta$-reductions. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). END%% ## Bibliography * Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).