--- title: Algebra of Sets TARGET DECK: Obsidian::STEM FILE TAGS: algebra::set set tags: - algebra - set --- ## Overview The study of the operations of union ($\cup$), intersection ($\cap$), and set difference ($-$), together with the inclusion relation ($\subseteq$), goes by the **algebra of sets**. %%ANKI Basic What three operators make up the algebra of sets? Back: $\cup$, $\cap$, and $-$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What *relation* is relevant in the algebra of sets? Back: $\subseteq$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ## Laws The algebra of sets obey laws reminiscent (but not exactly) of the algebra of real numbers. %%ANKI Cloze {$\cup$} is to algebra of sets whereas {$+$} is to algebra of real numbers. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze {$\cap$} is to algebra of sets whereas {$\cdot$} is to algebra of real numbers. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze {$-$} is to algebra of sets whereas {$-$} is to algebra of real numbers. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze {$\subseteq$} is to algebra of sets whereas {$\leq$} is to algebra of real numbers. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ### Commutative Laws For any sets $A$ and $B$, $$\begin{align*} A \cup B & = B \cup A \\ A \cap B & = B \cap A \end{align*}$$ %%ANKI Basic The commutative laws of the algebra of sets apply to what operators? Back: $\cup$ and $\cap$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What does the union commutative law state? Back: For any sets $A$ and $B$, $A \cup B = B \cup A$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What does the intersection commutative law state? Back: For any sets $A$ and $B$, $A \cap B = B \cap A$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ### Associative Laws For any sets $A$ and $B$, $$\begin{align*} A \cup (B \cup C) & = (A \cup B) \cup C \\ A \cap (B \cap C) & = (A \cap B) \cap C \end{align*}$$ %%ANKI Basic The associative laws of the algebra of sets apply to what operators? Back: $\cup$ and $\cap$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What does the union associative law state? Back: For any sets $A$, $B$, and $C$, $A \cup (B \cup C) = (A \cup B) \cup C$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What does the intersection associative law state? Back: For any sets $A$, $B$, and $C$, $A \cap (B \cap C) = (A \cap B) \cap C$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ### Distributive Laws For any sets $A$, $B$, and $C$, $$\begin{align*} A \cap (B \cup C) & = (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) & = (A \cup B) \cap (A \cup C) \end{align*}$$ %%ANKI Basic The distributive laws of the algebra of sets apply to what operators? Back: $\cup$ and $\cap$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze The distributive law states {$A \cap (B \cup C)$} $=$ {$(A \cap B) \cup (A \cap C)$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze The distributive law states {$A \cup (B \cap C)$} $=$ {$(A \cup B) \cap (A \cup C)$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What concept in set theory relates the algebra of sets to boolean algebra? Back: Membership. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What two equalities relates $A \cup B$ with $a \lor b$? Back: $a = (x \in A)$ and $b = (x \in B)$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What two equalities relates $A \cap B$ with $a \land b$? Back: $a = (x \in A)$ and $b = (x \in B)$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% More generally, for any sets $A$ and $\mathscr{B}$, $$\begin{align*} A \cup \bigcap \mathscr{B} & = \bigcap\, \{A \cup X \mid X \in \mathscr{B}\}, \text{ for } \mathscr{B} \neq \varnothing \\ A \cap \bigcup \mathscr{B} & = \bigcup\, \{A \cap X \mid X \in \mathscr{B}\} \end{align*}$$ %%ANKI Basic What is the generalization of identity $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$? Back: $A \cap \bigcup \mathscr{B} = \bigcup\, \{A \cap X \mid X \in \mathscr{B}\}$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the generalization of identity $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$? Back: $A \cup \bigcap \mathscr{B} = \bigcap\, \{A \cup X \mid X \in \mathscr{B}\}$ for $\mathscr{B} \neq \varnothing$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze Assuming $\mathscr{B} \neq \varnothing$, the distributive law states {$A \cup \bigcap \mathscr{B}$} $=$ {$\bigcap\, \{A \cup X \mid X \in \mathscr{B}\}$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze The distributive law states {$A \cap \bigcup \mathscr{B}$} $=$ {$\bigcup\, \{A \cap X \mid X \in \mathscr{B}\}$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic How is set $\{A \cup X \mid X \in \mathscr{B}\}$ pronounced? Back: The set of all $A \cup X$ such that $X \in \mathscr{B}$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the specialization of identity $A \cap \bigcup \mathscr{B} = \bigcup\, \{A \cap X \mid X \in \mathscr{B}\}$? Back: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the specialization of identity $A \cup \bigcap \mathscr{B} = \bigcap\, \{A \cup X \mid X \in \mathscr{B}\}$? Back: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Does $\bigcup\, \{A \cap X \mid X \in \mathscr{B}\}$ get smaller or larger as $\mathscr{B}$ gets larger? Back: Larger. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Does $\bigcup\, \{A \cap X \mid X \in \mathscr{B}\}$ get smaller or larger as $\mathscr{B}$ gets smaller? Back: Smaller. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Does $\bigcap\, \{A \cup X \mid X \in \mathscr{B}\}$ get smaller or larger as $\mathscr{B} \neq \varnothing$ gets larger? Back: Smaller. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Does $\bigcap\, \{A \cup X \mid X \in \mathscr{B}\}$ get smaller or larger as $\mathscr{B} \neq \varnothing$ gets smaller? Back: Larger. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ### De Morgan's Laws For any sets $A$, $B$, and $C$, $$\begin{align*} C - (A \cup B) & = (C - A) \cap (C - B) \\ C - (A \cap B) & = (C - A) \cup (C - B) \end{align*}$$ %%ANKI Basic The De Morgan's laws of the algebra of sets apply to what operators? Back: $\cup$, $\cap$, and $-$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze De Morgan's law states that {$C - (A \cup B)$} $=$ {$(C - A) \cap (C - B)$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze De Morgan's law states that {$C - (A \cap B)$} $=$ {$(C - A) \cup (C - B)$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze For their respective De Morgan's laws, {$-$} is to the algebra of sets whereas {$\neg$} is to boolean algebra. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze For their respective De Morgan's laws, {$\cup$} is to the algebra of sets whereas {$\lor$} is to boolean algebra. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze For their respective De Morgan's laws, {$\cap$} is to the algebra of sets whereas {$\land$} is to boolean algebra. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% More generally, for any sets $C$ and $\mathscr{A} \neq \varnothing$, $$\begin{align*} C - \bigcup \mathscr{A} & = \bigcap\, \{C - X \mid X \in \mathscr{A}\} \\ C - \bigcap \mathscr{A} & = \bigcup\, \{C - X \mid X \in \mathscr{A}\} \end{align*}$$ %%ANKI Basic What is the generalization of identity $C - (A \cup B) = (C - A) \cap (C - B)$? Back: $C - \bigcup \mathscr{A} = \bigcap\, \{C - X \mid X \in \mathscr{A}\}$ for $\mathscr{A} \neq \varnothing$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the generalization of identity $C - (A \cap B) = (C - A) \cup (C - B)$? Back: $C - \bigcap \mathscr{A} = \bigcup\, \{C - X \mid X \in \mathscr{A}\}$ for $\mathscr{A} \neq \varnothing$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze For $\mathscr{A} \neq \varnothing$, De Morgan's law states that {$C - \bigcap \mathscr{A}$} $=$ {$\bigcup\, \{C - X \mid X \in \mathscr{A}\}$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the specialization of identity $C - \bigcup \mathscr{A} = \bigcap\, \{C - X \mid X \in \mathscr{A}\}$? Back: $C - (A \cup B) = (C - A) \cap (C - B)$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the specialization of identity $C - \bigcap \mathscr{A} = \bigcup\, \{C - X \mid X \in \mathscr{A}\}$? Back: $C - (A \cap B) = (C - A) \cup (C - B)$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Which law of the algebra of sets is represented by e.g. $C - (A \cup B) = (C - A) \cap (C - B)$? Back: De Morgan's Law. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze For $\mathscr{A} \neq \varnothing$, De Morgan's law states that {$C - \bigcup \mathscr{A}$} $=$ {$\bigcap\, \{C - X \mid X \in \mathscr{A}\}$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Why does identity $C - \bigcup \mathscr{A} = \bigcap\, \{C - X \mid X \in \mathscr{A}\}$ fail when $\mathscr{A} = \varnothing$? Back: The RHS evaluates to class $\bigcap \varnothing$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Why does identity $C - \bigcap \mathscr{A} = \bigcup\, \{C - X \mid X \in \mathscr{A}\}$ fail when $\mathscr{A} = \varnothing$? Back: $\bigcap \mathscr{A}$ is undefined. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Does $\bigcap\, \{C - X \mid X \in \mathscr{A}\}$ get smaller or larger as $\mathscr{A} \neq \varnothing$ gets larger? Back: Smaller. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Does $\bigcap\, \{C - X \mid X \in \mathscr{A}\}$ get smaller or larger as $\mathscr{A} \neq \varnothing$ gets smaller? Back: Larger. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Does $\bigcup\, \{C - X \mid X \in \mathscr{A}\}$ get smaller or larger as $\mathscr{A} \neq \varnothing$ gets larger? Back: Larger. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Does $\bigcup\, \{C - X \mid X \in \mathscr{A}\}$ get smaller or larger as $\mathscr{A} \neq \varnothing$ gets smaller? Back: Smaller. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ### Monotonicity Let $A$, $B$, and $C$ be arbitrary sets. Then * $A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$, * $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$, * $A \subseteq B \Rightarrow \bigcup A \subseteq \bigcup B$ %%ANKI Basic What kind of propositional logical statement are the monotonicity properties of $\subseteq$? Back: An implication. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the shared antecedent of the monotonicity properties of $\subseteq$? Back: $A \subseteq B$ for some sets $A$ and $B$. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Given sets $A$, $B$, and $C$, state the monotonicity property of $\subseteq$ related to the $\cup$ operator. Back: $A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Given sets $A$, $B$, and $C$, state the monotonicity property of $\subseteq$ related to the $\cap$ operator. Back: $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Given sets $A$ and $B$, state the monotonicity property of $\subseteq$ related to the $\bigcup$ operator. Back: $A \subseteq B \Rightarrow \bigcup A \subseteq \bigcup B$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Why are the monotonicity properties of $\subseteq$ named the way they are? Back: The ordering of operands in the antecedent are preserved in the consequent. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ### Antimonotonicity Let $A$, $B$, and $C$ be arbitrary sets. Then * $A \subseteq B \Rightarrow C - B \subseteq C - A$, * $\varnothing \neq A \subseteq B \Rightarrow \bigcap B \subseteq \bigcap A$ %%ANKI Basic What kind of propositional logical statement are the antimonotonicity properties of $\subseteq$? Back: An implication. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic What is the shared antecedent of the antimonotonicity properties of $\subseteq$? Back: N/A. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Cloze {1:Monotonicity} of $\subseteq$ is to {2:$\bigcup$} whereas {2:antimonotonicity} of $\subseteq$ is to {1:$\bigcap$}. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Why are the antimonotonicity properties of $\subseteq$ named the way they are? Back: The ordering of operands in the antecedent are reversed in the consequent. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Given sets $A$ and $B$, state the antimonotonicity property of $\subseteq$ related to the $\bigcap$ operator. Back: $\varnothing \neq A \subseteq B \Rightarrow \bigcap B \subseteq \bigcap A$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Given sets $A$, $B$, and $C$, state the antimonotonicity property of $\subseteq$ related to the $-$ operator. Back: $A \subseteq B \Rightarrow C - B \subseteq C - A$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% %%ANKI Basic Why do we need the empty set check in $\varnothing \neq A \subseteq B \Rightarrow \bigcap B \subseteq \bigcap A$? Back: $\bigcap A$ is not a set. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% ## Bibliography * Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).