--- title: α-conversion TARGET DECK: Obsidian::STEM FILE TAGS: λ-calculus tags: - λ-calculus --- ## Overview Let $\lambda$-term $P$ contain an occurrence of $\lambda x. M$, and let $y \not\in FV(M)$. The act of replacing this occurrence of $\lambda x. M$ with $\lambda y. [y/x]M$ is called a **change of bound variable** or an **$\alpha$-conversion in $P$**. If $P$ can be changed to $\lambda$-term $Q$ by a finite series of changes of bound variables, we shall say **$P$ is congruent to $Q$**, or **$P$ $\alpha$-converts to $Q$**, or $P \equiv_\alpha Q$. %%ANKI Basic If $P \equiv Q$, does $P \equiv_\alpha Q$? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744134--> END%% %%ANKI Cloze $P \equiv Q$ is to {equivalent} whereas $P \equiv_\alpha Q$ is to {congruent}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1719065602220--> END%% %%ANKI Basic What two ways can we pronounce $P \equiv_\alpha Q$? Back: "$P$ is congruent to $Q$" and "$P$ $\alpha$-converts to $Q$". Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718475477173--> END%% %%ANKI Basic If $P \equiv_\alpha Q$, does $P \equiv Q$? Back: Not necessarily. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744141--> END%% %%ANKI Basic What does an $\alpha$-conversion refer to? Back: The act of replacing an occurrence of $(\lambda x. M)$ with $\lambda y. [y/x]M$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718475424870--> END%% %%ANKI Basic What distinguishes terms "$\alpha$-conversion" and "$\alpha$-converts"? Back: The latter refers to 0 or more applications of the former. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718475424871--> END%% %%ANKI Basic Is $\alpha$-conversion a symmetric relation? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1721305567259--> END%% %%ANKI Basic $\alpha$-conversion is most related to what kind of $\lambda$-term? Back: Abstractions. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744144--> END%% %%ANKI Basic What property must $y$ satisfy for $\lambda x. M \equiv_\alpha \lambda y. [y/x]M$? Back: $y \not\in FV(M)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718802166425--> END%% %%ANKI Cloze "$\alpha$-{conversion}" refers to exactly one change of bound variable. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718475424873--> END%% %%ANKI Cloze "$\alpha$-{converts}" refers to zero or more change of bound variables. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718475424874--> END%% %%ANKI Basic What *kind* of conversion is a change of bound variable? Back: An $\alpha$-conversion. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744150--> END%% %%ANKI Basic Given $\lambda$-terms $P$ and $Q$, what does it mean for $P$ to be congruent to $Q$? Back: $P \equiv_\alpha Q$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744154--> END%% %%ANKI Basic Given $\lambda$-terms $P$ and $Q$, $P \equiv_\alpha Q$ if and only if what? Back: $P$ can be changed to $Q$ with a finite number of changes of bound variables. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744157--> END%% %%ANKI Basic Is the following identity true? $$\lambda x y. x(xy) \equiv \lambda x. (\lambda y. x(xy))$$ Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744162--> END%% %%ANKI Basic Is the following identity true? $$\lambda x y. x(xy) \equiv_\alpha \lambda x. (\lambda y. x(xy))$$ Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744166--> END%% %%ANKI Basic Is the following identity true? $$\lambda x y. x(xy) \equiv \lambda u v. u(uv)$$ Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744169--> END%% %%ANKI Basic Is the following identity true? $$\lambda x y. x(xy) \equiv_\alpha \lambda u v. u(uv)$$ Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744173--> END%% %%ANKI Cloze $\alpha$-conversion is known as a change of {bound variable}. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717687744176--> END%% %%ANKI Basic What greek-prefixed term is a change of bound variable known as? Back: An $\alpha$-conversion. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718475424876--> END%% %%ANKI Basic If $P \equiv_\alpha Q$, what can be said about the free variables of $P$ and $Q$? Back: $FV(P) = FV(Q)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717848027572--> END%% %%ANKI Basic What does it mean for $\equiv_\alpha$ to be reflexive? Back: $P \equiv_\alpha P$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717848027575--> END%% %%ANKI Basic What does it mean for $\equiv_\alpha$ to be symmetric? Back: $P \equiv_\alpha Q \Rightarrow Q \equiv_\alpha P$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717848027579--> END%% %%ANKI Basic What does it mean for $\equiv_\alpha$ to be transitive? Back: $P \equiv_\alpha Q \land Q \equiv_\alpha R \Rightarrow P \equiv_\alpha R$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717848027582--> END%% %%ANKI Basic What three properties make $\equiv_\alpha$ an equivalence relation? Back: $\equiv_\alpha$ is reflexive, symmetric, and transitive. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717848027586--> END%% Let $x$, $y$, and $v$ be distinct variables. Then * $v \not\in FV(M) \Rightarrow [P/v][v/x]M \equiv_\alpha [P/x]M$ * $v \not\in FV(M) \Rightarrow [x/v][v/x]M \equiv_\alpha M$ * $y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ * $x \not\in FV(Q) \land y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [Q/y][P/x]M$ * $[P/x][Q/x]M \equiv_\alpha [([P/x]Q)/x]M$ %%ANKI Basic $[N/x]M$ corresponds to which equivalence-transformation inference rule? Back: Substitution. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717449830572--> END%% %%ANKI Basic $[P/v][v/x]M \equiv [P/x]M$ corresponds to which equivalence-transformation inference rule? Back: Transitivity. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717449830601--> END%% %%ANKI Basic Rewrite $(E_u^x)_v^x$ using $\lambda$-calculus syntax. Back: $[v/x][u/x]E$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717449830608--> END%% %%ANKI Basic Rewrite $[x/v][v/x]M$ using equivalence-transformation syntax. Back: $(M^x_v)^v_x$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717449830614--> END%% %%ANKI Cloze {$v \not\in FV(M)$} $\Rightarrow [P/v][v/x]M \equiv_\alpha [P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810777--> END%% %%ANKI Basic What happens if the antecedent is false in the following? $$v \not\in FV(M) \Rightarrow [P/v][v/x]M \equiv_\alpha [P/x]M$$ Back: The LHS of the identity has more occurrences of $P$ than the right. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810781--> END%% %%ANKI Basic If $v \in FV(M)$ and $x \not\in FV(M)$, does $[P/v][v/x]M \equiv_\alpha [P/x]M$? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717850495760--> END%% %%ANKI Basic If $v \not\in FV(M)$ and $x \in FV(M)$, does $[P/v][v/x]M \equiv_\alpha [P/x]M$? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717850495763--> END%% %%ANKI Basic If $v \not\in FV(M)$, what simpler term is $[P/v][v/x]M$ congruent to? Back: $[P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717850495766--> END%% %%ANKI Basic If $v \not\in FV(M)$ and $x \in FV(M)$, does $[x/v][v/x]M \equiv_\alpha M$? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717850495775--> END%% %%ANKI Basic If $v \not\in FV(M)$ and $x \in FV(M)$, does $[v/x][x/v]M \equiv_\alpha M$? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717850495778--> END%% %%ANKI Basic If $v \in FV(M)$ and $x \not\in FV(M)$, does $[v/x][x/v]M \equiv_\alpha M$? Back: Yes. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717850495782--> END%% %%ANKI Basic If $v \in FV(M)$ and $x \not\in FV(M)$, does $[x/v][v/x]M \equiv_\alpha M$? Back: No. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717850495785--> END%% %%ANKI Basic If $y \not\in FV(P)$, "commuting" substitution in $[P/x][Q/y]M$ yields what congruent term? Back: $[([P/x]Q)/y][P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717853380814--> END%% %%ANKI Cloze {$y \not\in FV(P)$} $\Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810784--> END%% %%ANKI Cloze {$x \not\in FV(Q) \land y \not\in FV(P)$} $\Rightarrow [P/x][Q/y]M \equiv_\alpha [Q/y][P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422235903--> END%% %%ANKI Basic $[P/x][Q/y]M \equiv_\alpha [Q/y][P/x]M$ is a specialization of what more general congruence? Back: $[P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422235909--> END%% %%ANKI Cloze {$T$} $\Rightarrow [P/x][Q/x]M \equiv_\alpha [([P/x]Q)/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422235912--> END%% %%ANKI Basic What expression containing nested substitutions is congruent to $[P/x][Q/x]M$? Back: $[([P/x]Q)/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422235916--> END%% %%ANKI Basic What expression containing adjacent substitutions is congruent to $[([P/x]Q)/x]M$? Back: $[P/x][Q/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422279995--> END%% %%ANKI Basic What happens if the antecedent of the following lemma is false? $$y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$$ Back: $y$ is subbed in $M$ on the LHS but subbed in both $P$ and $M$ on the RHS. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810787--> END%% %%ANKI Basic Free occurrences of $x$ are substituted in which $\lambda$-terms of $[P/x][Q/y]M$? Back: $Q$ and $M$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810790--> END%% %%ANKI Basic Free occurrences of $y$ are substituted in which $\lambda$-terms of $[P/x][Q/y]M$? Back: $M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810794--> END%% %%ANKI Basic Free occurrences of $x$ are substituted in which $\lambda$-terms of $[([P/x]Q)/y][P/x]M$? Back: $Q$ and $M$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810798--> END%% %%ANKI Basic Free occurrences of $y$ are substituted in which $\lambda$-terms of $[([P/x]Q)/y][P/x]M$? Back: $P$ and $M$. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1717855810802--> END%% Substitution is well-defined with respect to $\alpha$-conversion. That is, if $M \equiv_\alpha M'$ and $N \equiv N'$, then $$[N/x]M \equiv_\alpha [N'/x]M'$$ %%ANKI Basic The proof of which implication shows substitution is well-behaved w.r.t. $\alpha$-conversion? Back: $M \equiv_\alpha M' \land N \equiv_\alpha N' \Rightarrow [N/x]M \equiv_\alpha [N'/x]M'$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422973129--> END%% %%ANKI Basic What does Hindley et al. mean by "substitution is well-behaved w.r.t. $\alpha$-conversion"? Back: Substitution then $\alpha$-conversion is congruent to $\alpha$-conversion then substitution. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422973135--> END%% %%ANKI Cloze {$M \equiv_\alpha M' \land N \equiv_\alpha N'$} $\Rightarrow [N/x]M \equiv_\alpha [N'/x]M'$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422973141--> END%% %%ANKI Basic How does Hindley et al. describe the following implication? $$M \equiv_\alpha M' \land N \equiv_\alpha N' \Rightarrow [N/x]M \equiv_\alpha [N'/x]M'$$ Back: As "substitution is well-defined with respect to $\alpha$-conversion." Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718422981125--> END%% %%ANKI Basic Suppose $P \equiv_\alpha Q$. How do $FV(P)$ and $FV(Q)$ relate to one another? Back: $FV(P) = FV(Q)$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1719406791439--> END%% %%ANKI Basic *Why* is this implication true: $P \equiv_\alpha Q \Rightarrow FV(P) = FV(Q)$ Back: $\alpha$-conversions do not modify free variables in any way. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1719406791443--> END%% ## Simultaneous Substitution Substitution can be generalized in the natural way to define simultaneous substitution $$[N_1/x_1, N_2/x_2, \ldots, N_n/x_n]M$$ for $n \geq 2$. As in [[equiv-trans#Substitution|equivalence-transformation]], simultaneous substitution is different from sequential substitution. %%ANKI Basic How is simultaneous substitution of $N_1$ for $x_1$ and $N_2$ for $x_2$ in $M$ denoted? Back: $[N_1/x_1, N_2/x]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718473252304--> END%% %%ANKI Basic How is $[N_1/x_1, N_2/x_2]M$ denoted in the equivalence-transformation system? Back: $M_{N_1, N_2}^{x_1, x_2}$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718473252307--> END%% %%ANKI Basic How is $M_{N_1, N_2}^{x_1, x_2}$ denoted in $\lambda$-calculus? Back: $[N_1/x_1, N_2/x_2]M$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718473252312--> END%% %%ANKI Basic Suppose $M \equiv x_1x_2$. What is the result of $[u/x_1]([x_1/x_2]M)$? Back: $uu$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718473252309--> END%% %%ANKI Basic Suppose $M \equiv x_1x_2$. What is the result of $[u/x_1, x_1/x_2]M$? Back: $ux_1$ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). <!--ID: 1718473252311--> END%% ## Bibliography * Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).