--- title: Arithmetic Sequence TARGET DECK: Obsidian::STEM FILE TAGS: algebra::sequence tags: - algebra - sequence --- ## Overview An **arithmetic sequence** $(a_n)_{n \geq 0}^d$ is a sequence in which each term differs by a constant $d$. Given initial term $a$, it has recursive definition $$a_n = a_{n-1} + d \text{ with } a_0 = a$$ and closed formula $$a_n = a + nd.$$ %%ANKI Basic What makes a sequence an *arithmetic* sequence? Back: Each term has the same constant difference from the previous. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What two properties are necessary to characterize an arithmetic sequence? Back: The initial term and the common difference. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic What does it mean for the common difference of an arithmetic sequence $(a_n)$ to be $d$? Back: $a_n - a_{n-1} = d$ for all valid values of $n$. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)$ be an arithmetic sequence. What term refers to the difference between terms? Back: The common difference. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Why is the "common difference" of an arithmetic sequence named the way it is? Back: It is shared between all successive terms. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic The term "common difference" is related to what kind of sequence? Back: An arithmetic sequence. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 0}^d$ be an arithmetic sequence. What is its recursive definition's recurrence relation? Back: $a_n = a_{n-1} + d$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 0}^d$ be an arithmetic sequence. What is the $n$th term's closed formula? Back: $a_n = a_0 + nd$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 0}$ be an arithmetic sequence. What is the closed formula of $\sum_{k=0}^n a_k$? Back: $$\frac{(a_0 + a_n)(n + 1)}{2}$$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. What is the closed formula of $\sum_{k=1}^n a_k$? Back: $$\frac{(a_1 + a_n)(n)}{2}$$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. What does term $n$ correspond to in the following? $$\sum a_k = \frac{(a_1 + a_n)(n)}{2}$$ Back: The number of terms in the summation. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. How do you expand $\sum_{k=1}^n a_k$ to derive its closed formula? Back: $$\begin{matrix} S & = & a_1 & + & a_2 & + & \cdots & + & a_n \\ S & = & a_n & + & a_{n-1} & + & \cdots & + & a_1 \\ \hline 2S & = &(a_1 + a_n) & + & (a_1 + a_n) & + & \cdots & + & (a_1 + a_n) \end{matrix}$$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Interpreted as an arithmetic sequence, what is the common ratio of the triangular numbers? Back: $1$ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. What does term $2$ correspond to in the following? $$\sum a_k = \frac{(a_1 + a_n)(n)}{2}$$ Back: The double-counting that occurs when adding the summation to itself. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Basic Let $(a_n)_{n \geq 1}$ be an arithmetic sequence. How do we visualize the role of term $2$ in the following? $$\sum a_k = \frac{(a_1 + a_n)(n)}{2}$$ Back: ``` * * * * - * * * - - * * - - - * - - - - ``` Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% %%ANKI Cloze You can find the partial sums of {arithmetic} sequences using the "reverse and add" strategy. Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf). END%% ## Bibliography * Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).